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The Integrated SoC

The custom SoC increasingly adopted in “general purpose” computing

e Behavior of a disruptive technology, as characterized by “The Innovator’s Dilemma”
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Innovator’s Dilemma, Clayton Christensen

*ldea discussed separately by Tim Millet (VP, Platform Architecture, Apple) and James Allworth (https://jamesallworth.medium.com/intels-disruption-is-now-complete-d4fa771f0f2c)



This Talk

 How to build custom SoCs ?
e Open-source generators
e Design flows
e Chipyard

e Customizing an SoC for numerical data analysis applications
SoC customization

Flexibility: From deep learning to traditional linear algebra
Software stack

Hardware/Software co-design



Trends in Open Source Hardware

* Organization/Specifications: RISC-V, CHIPS Alliance, OpenHW
* Community: LowRISC, FOSSI

* Academia: PULP Platform, OpenPiton, ESP : ‘
* Government: DARPA POSH RISC
Industry: WD SWERVE, NVIDIA NVDLA ‘
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Building An Open Source RISC-V System

Cool! | want to build an
Open-Source custom
RISC-V SoC.
What do | need to do?

4 N

Have you heard of this Free and
Open RISC-V thing? It should be
so easy to build real systems now

o

-

N

~

| think | heard of some stuff from
Berkeley (Rocketchip? Chisel?),
also OpenPiton, and PULP

—=_,



Building An Open Source RISC-V System

* Processor core IP
* Supporting system IP (memory system, peripherals, buses, etc.)
* Integrate custom blocks

* Write appropriate software

* Verify using bare-metal simulation
 Validate full-system

* Physical design

* Test environment

e Fabrication




Hardware Generators

Instead of writing Verilog instances

module MeshPE
# (parameter INPUT BITWIDTH, OUTPUT_BITWIDTH)
(

input clock,

input reset,

input signed [OUTPUT BITWIDTH-1:0] in_a,

input signed [OUTPUT BITWIDTH-1:0] in b,

input in control dataflow,
input in valid,

output reg signed [OUTPUT BITWIDTH-1:0] out a,
output reg signed [OUTPUT BITWIDTH-1:0] out c,
output reg signed [OUTPUT BITWIDTH-1:0] out b,
output reg out control dataflow,
output reg out valid
);

always @ (posedge clock) begin

if (reset)

begin
out control dataflow <= 1'bO0;
out a <= {OUTPUT BITWIDTH{1'bO}};
out valid <= 1'b0;

end

else

begin
out control dataflow <= in control dataflow;
out a <= in a;
out valid <= in valid;

end

end

Write a program that generates Verilog

class PE[T <: Data] (inputType: T, outputType: T,
accType: T, df: Dataflow.Value,
latency: Int,
max_ simultaneous matmuls: Int)
(implicit ev: Arithmetic[T]) extends Module ({

val io = IO (new Bundle {
val in_a = Input (inputType)
val in b Input (outputType)
val in d = Input (outputType)
val out a = Output (inputType)
val b = Output (outputType)
val out c = Output (outputType)

O

c

jart

o
|

val in control = Input (new PEControl (accType))
val out control = Output (new PEControl (accType))
val in id = Input (UInt (log2Up (max simultaneous matmuls) .W))

val out id = Output (UInt (log2Up (max simultaneous matmuls) .W))

val cType = if (df == Dataflow.WS) inputType else accType

val a ShiftRegister(io.in _a, latency)
val b = ShiftRegister(io.in b, latency)

io.out _a := a

io.out control.dataflow := dataflow
io.out control.propagate := prop
io.out control.shift := shift

10



Building An Open Source RISC-V System

A lot of RISC-V & generator-related open source hardware projects out there

BOOM Core Diplomacy FireSim
Chisel
AELCL (ECLE TileLink Configuration FPGA-shells
FIRRTL System
‘ FireMarshal Caches
RISC.V Peripherals HAMMER
Accelerators
Goal:

Make it easy for small teams to

design, integrate, simulate, and tape-out a custom SoC




Chipyard
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Chipyard
Tooling Rocket Chip Flows
Generators
Chisel Diplomacy FireSim
Rocket Core BOOM Core
FIRRTL Configuration HAMMER
System
Accelerators TileLink
Software RTL
RISC-V Simulation
Verilog IP
Caches Peripherals
‘ FireMarshal FPGA-shells
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How is this integrated? Generators!

Custom SoC
Configuration
y
RTL Generators
RISC-V Accelerators Multi-level Peripherals Custom
Cores Caches P Verilog
v
RTL Build Process
IO and Harness Binding
¥ L ] L 2 ¥
FIRRTL IR
y A 4
FireSim Transforms: VLSI Transforms:
FAME Decoupling Top and Harness Split
FPGA Platform Mapping Replace Memories
Assertion/Printf Synthesis Module Promotion
ILA Wiring Module Grouping
RAM Optimizations IO Cell Technology Mapping
v \ 4 v ¥
FireSim Behavioral FPGA-Mapped ;
Verilog Verilog Verilog VLSl Verilog
A A\ 4 A\ 4
FireSim FPGA- Software RTL Simulation FPGA Hammer Automated
Accelerated Emulation | | [_Commercial | [ Open-Source | Prototyping VLSI Flow




How is this integrated? Generators!

* Everything starts from a

Custom SoC

generator configuration Configuration
¥
1 1 1 RTL Generators
* Generators written in Chisel e | pvosnwmmme | T | e | e
Cores Caches Verilog

* Generator SoC basic component

libraries (enable integration) AL e
. 10 and Harness Binding
* Rocket Chip : 3 ¥ :
o D| |OmaC FIRRTL IR
P y _— I
* Higher level generator libraries: "FAVIE Decoupling Top and Harness Spi
BOOM, Inclusive Cache, SiFive Assertion/Print Synihesis Moctle Promotion
Blocks, Accel. St o L
. . v \ 4 v ¥
* Generators can integrate third- Firesim Benavioral FreaMapped] [ vis veriog
. . erilo Verilo erilo
party Verilog instance IP —r - = T
FireSim FPGA- Software RTL Simulation FPGA Hammer Automated
® G enerators Iea d frO m | P to Accelerated Emulation | | [Commercial ] [Open-Source } Prototyping VLSI Flow

design flows

14



How is this integrated? Generators!

e Elaboration and

Custpm SQC
Transformation Sogeen
RTL Ge.nerators
(] | nte rn a IS : FI R RTL —_— I R RCIZC;V Accelerators Mg::tivsel Peripherals ?;;?:Ic;;n
enables aUtomatEd RTL Build Process
manipulation of the i 0 and Harmess Bindng ]
hardware description FIRRTL IR
! |
* Externals: I/O and Harness F i
Binders — pluggable Asserton/Pritf Syniheos Modie Promation
. . ILA Wirin Module Groupin
| nte rfa ce fu N Ct 10NS enda b I e RAM Optimizagtions 1O Cell Technologprgpping
agtomated targeting of Ee Senavoral | [FPeadapped] | visi veriog
different external interface ——— —— i ¥
. FireSim FPGA- _ Software RTL Simulation FPGA_ Hammer Automated
req u I re m e ntS Accelerated Emulation | | |_Commercial | | Open-Source | Prototyping VLSI Flow
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How is this integrated? Generators!

* Design flows

Custom SoC
. . Confi ti
e Software RTL Simulation —
. RTL Generators
* FPGA-Accelerated Emulation Fadil | e | IriCey | pe—"| e
* FPGA Prototyping 7
. RTL Build Process
¢ VLSI Implementat|0n 10 and Harness Binding
L 3 L 2 2 3
* Makefile based automation FIRRTL IR
- ! |
Of t ra n S | t | O n b etwe e n FireSim Transforms: VLSI Transforms:
. FAME Decoupling Top and Harness Split
d esli g N fl OWS FPGA Platform Mapping Replace Memories
Assertion/Printf Synthesis Module Promotion
.~ ILA Wiring Module Grouping
e Flow-s peci fic collateral RAM Optimizations 10 Cell Technology Mapping
v v v L ]
generation (harnesses, Fresim Beavioral | [FPGMapped) ] visi veriog
d r I Ve rs’ CO n fl g u rat I O n a n d FireSim FPGA- Software RTL Simulation FPGA Hammer Automated
con St ra | nt fl I es, etc . ) Accelerated Emulation | | [[Commercial ] [Open-Source ] Prototyping VLSI Flow
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Software

* Hardware alone is not enough Core Application Logic

* Custom SoCs require custom Libraries
software User-space distros

e Different platforms require 05 Kernel gjl;';jl
different firmware N

* Chipyard codifies custom

software handling RISC-V Toolchain
. Standard Custom
* Toolchains
* Reproducible software [ | | | |
generation and management )
. . QEMU Spike Software FireSim Test
flows using FireMarshal Functional ISA RTL si } ;
. - . - . imulation Chip
Emulation || Simulation || Simulation




~| HW/SW Co-Design

Tile 1 Tile 2

Hwacha Rocket RISC-V Hwacha
Master Sequencer Vector Application Processor 0 Vector Master Sequencer

* Chipyard + FireSim enable new =T = o | e | v

Host Machine

SoC

Vector Execution | || | Vector Execution Flcating Point Unit || | Vector Execution | || [ Vector Execution Configuration Simulation
Unit (VXU) Unit (VXU) (FPU) unit Unit (VXU) Unit (V. Timing
’ | | Control

levels of HW/SW co-design | | o || 6 e [ [

Unit Network
Rocket RISC-V XU Model
Scalar Application Processor 1
E |~
° (sMy) Scalar
° N4 N = N
Floating Point Unit
ull-system design space e s | NS
fector Memory ector Memory n'..gvlﬂ‘“"“’“ ning Absolite
Unit (VMU) Unit (VMU) OCoR software Pl i Apmining 5
] solute Speedup 2
. s
) T = '
o e 0=
exploration —
] 10 . ./ v
35 34! o mwE o
I }: Y —— »
=

* Multi-core, multi-accelerator, multi- |
threaded SoC configurations

 Full software stacks. Pre-silicon TS, o= w gl =
. . . #define GEMMINI_PARAMS_H % E"i“: |w "’ R .,.:.-w" 'vold(“ ‘“:"té:’f wivate
Linux, SPECInt with reference inputs o s | ¥ B2 T2

#define XCUSTOM ACC 3
#define DIM 8

#define ADDR LEN 32
#define BANK NUM 4
#define BANK ROWS 4096

* Profiling and performance tuning

#define ACC_ROWS 2048 .
. $define MAX BYTES 64 Simulated World
Py #define MAX_BLOCK_LEN (MAX_BYTES/ (DIM*2))
Auto-generated header files e S L Program s rao sst st st .
X Count Value £a08 addi x0, al, 1 < P
typedef uintlé_t elem_t; £a10 mul a2, a3, a2 Instruction
#define ELEM T_IS_LOWPREC_FLOAT fals add a2, al, a0
Y O t_ f_ b d f t static const float elem t max = 3.3895313892515355E38; g:gg :ﬁi‘ :: :32, :; Value
u O a n pe r O rl I la n Ce CO u n e rS static const float elem t _min = -3.3895313892515355E38; .H- £a30 add a2, al, 20
typedef float acc_t; £a38 add a3, a2, al
typedef double full t; £a40 mul a2, a3, a2
. - Software fag8 add a2, al, a0
* Hardware logging levels (triggers R
gg g gg #define ELEM_T_EXP_BITS 8 ' Observer fass mul a2, a3, a2
#define ELEM T STG BITS 8 A £a60 add a2, al, a0
#define ACC_T_EXP_BITS 8 Triggers fass add a3, az, al
#define ACC_T_SIG BITS 24
typedef uintlé_t elem_t_bits; 1 1 o
typedef uint32_t acc_t_bits; » Time
Global ! /l
Observer
Triggers Cycle Count

Value



Customizing an SoC for Numerical
Data Analysis Workloads




Numerical Data Analysis

* Sensors everywhere are generating data
e Logs (both cloud and edge)
* Cyber-physical sensors (gyro, microphones, ook

Computer. ™™ Mathand

cameras, LIDAR, RADAR, temperature, GPS)

* Data Science as an emerging paradigm, Science/IT Statistics
more than just DNNs: Data
, , Science
* Linear models and regressions Software Tradiional
. . . . Development Research
* Dimensionality reduction
* Data-mining / unsupervised Learning Domains/Business
* Graph Analysis Knowledge

* Deep learning

* Lots of dense linear algebra Conway’s Van Diagram [1]

20

[1] https://towardsdatascience.com/introduction-to-statistics-e9d72d818745



https://towardsdatascience.com/introduction-to-statistics-e9d72d818745

SoC for Data Analysis Workloads

e Customize an SoC for numerical data analysis - start with a basic core and

memory system

class DataSoC extends Config(
new freechips.rocketchip.subsystem.
WithInclusiveCache (nBanks=4)
new chipyard.config.AbstractConfigqg)

++

RV64GC

---------- BPU

FPU

32 KB 32 KB
L1D$ L11$

v

Tilelink Crossbar

UART

JTAG

v
512 KB L2 Cache

BootROM

21




SoC for Data Analysis Workloads

Compute-intensive workloads require a high performance CPU

* 3-wide BOOM configuration, 12-stage out-of-order core

BOOM RV64GC

3-wide |[--="----- BPU
. Decode ||~ RF :
class DataSoC extends Config( T ....
new boom.common.WithNLargeBooms (1) ++ ‘;22;7 """"" Sched
new freechips.rocketchip.subsystem. LB
WithInclusiveCache (nBanks=4) ++ v ROB
new chipyard.config.AbstractConfigqg)
32 KB 32 KB
L1D$ L11$

v

Tilelink Crossbar

v
UART
512 KB L2 Cache BootROM
JTAG

22



SoC for Data Analysis Workloads

Need to process element-wise vector operations

* Add a data-parallel vector unit

 Hwacha — temporal vector-fetch architecture

BOOM RV64GC HwaCha Vector Lane
- Vector
S'W'C;e F_:f """ ‘"H BPU HP Accel. Vector Execution
ecode A
class DataSoC extends Config( ::‘__B'_:__: " Unit (VXU)
new hwacha.DefaultHwachaConfig ++ v """"" Sched Sa:;er s:,? uae::::l
new boom.common.WithNLargeBooms (1) ++ B : e
new freechips.rocketchip.subsystem. v ROB [I7T Z
WithInclusiveCache (nBanks=4) ++ Scalar EE_\_,EF__E
new chipyard.config.AbstractConfigqg) 32 KB 32 KB Unit
L1D$ L11$ \ /
\ 4 KB ||| Vector Memory
Tilelink Crossbar VIS Unit (VMU)
A
UART v
512 KB L2 Cache BootROM
JTAG

23



&)

class
new
new
new

new

DataSoC extends Config(
hwacha.DefaultHwachaConfig
boom.common .WithNLargeBooms (1)
freechips.rocketchip.subsystem.
WithInclusiveCache (nBanks=4)
chipyard.config.AbstractConfigq)

++
++

++

SoC for Data Analysis Workloads

What about matrix operations?

BOOM RV64GC Hwacha Vector Lane
Vector
WF: ------- BPU HP Accel. Vector Execution
Decode [~ RF Unit (VXU)
[l sched Master Sequencer/
Seq. Expander
TLB
ROB I I
Scalar ||| F==------=
32 KB 32 KB Unit
L1D$ L11$ \_/
v 4 KB |l| Vector Memory
Tilelink Crossbar VIS Unit (VMU)
A
UART 512*KB L2 Cach BootROM
dache (0] o)
JTAG

24




Customization

Customize (transitive verb) - Modify (something) to
suit a particular individual or task.
Oxford Dictionary

My interpretation:

* Don’t build from scratch

* Re-use existing system blocks

* For example, re-use a DNN accelerator as a matrix engine

25



DNN Accelerators

* Primary compute operations:
*« GEMM
* GEMV
* CONV

* Fused operations:
* Pooling
 Activation function (ReLU / Sigmoid)

 Data re-use
e Scratchpad
 Accumulators

* Numerics: 1-bit, Int8, Int16, FP16, Bfloat16, FP32




DNN Accelerators

* Primary compute operations:
* GEMM

* GEMV
* CONV

* Fused operations:
* Pooling

Common dense linear
algebra operations.

Not restricted to just C

INNS!

 Activation function (ReLU / Sigmoid)

 Data re-use
e Scratchpad
 Accumulators

* Numerics: 1-bit, Int8, Int16, FP16, Bfloat16, FP32



Secondary-Use of DNN Accelerators

* This has been going on in the HPC community for a long time

Harnessing GPU Tensor Cores for Fast FP16

Arithmetic to Speed up Mixed-Precision Iterative

Refinement Solvers

Azzam Haidar, Stanimire Tomov", Jack Dongan‘a"“ Nicholas J. Higham §

{haidar|tc

*Innovative Computing Laborat
*0ak Ric

FUnip

$School of Mathe

Abstract—Low-precision floating-point arithmetic i
erful tool for accelerating scient computing apj
especially those in artificial intelligence. Here, we p
tion showing that other high-performance ¢
(HPC) applications can also harness this power. Specil
use the general HPC problem, Ax=b, where A is a Ia
matrix, and a double precision (FP64) solution is need:
curacy. Our approach is based on mixed-precision (FP1
iterative refinement, and we generalize and extend prior
into a framework, for which we develop architectui
algorithms and highly tuned implementations. These n
ods show how using half-precision Tensor Cores (FPL(
the arithmetic can provide up to 4x speedup. This
the performance boost that the FP16-TC provide as '
the improved accuracy over the classical FP16 arith
is obtained because the GEMM accumulation occurs
arithmetic.
Index Terms—FP16 Arithmetic, Half Precision, Mix
sion Solvers, Iterative GPU

Accelerating Reduction and Scan Using Tensor Core Units

Abdul Dakkak, Cheng Li

University of Ilinois Urbana-Champaign

Matrix Engines for High Performance Computing:
A Paragon of Performance or Grasping at Straws?

Jens Domke*S, Emil Vatai*S, Aleksandr Drozd*S, Peng Chenf. Yosuke O;
Artur Podobas

Shweta Salaria*®, Daichi Mukunoki*,

Dyama’, Lingqi Zhang®,
Mohamed Wahib'*, Satoshi Matsuoka*$

* RIKEN CCS, Japan {jens.domke, emil.vatai, aleksandr.drozd, shweta.salaria, daichi.mukunoki}@riken. jp
T National Institute of Advanced Industrial Science and Technology, Japan {mchamed.attia, chin.hou}@aist.go. ip
KTH Royal Institute of Technology, Stockholm, Sweden podobas@kth. se
§ Tokyo Institute of Technology, Japan {oyama.y.aa, zhang. 1.ai}em.titech.ac. ip

Abstract—Matrix or units, in_ different forms and
affinitice are becoming 4 reality in modern processors; CPUs
and otherwise. The current and dominant algorithmic approach
to Deep Learning merits the commercial investments in these
units, and deduced from the No. 1 benchmark in supercomput-
ing, namely High Performance Linpack, one would expect an
awal ¥ the HPC community, too.

Hence, our g i the practical added benefts
for HPC and machine learning .\ppllr having access to
‘matrix engines. For this purpose, we perform an in-depth survey
of saftvare stacks, prosy nupllc.\lmns and benchmarks, and

it tch job records. We pr st-benefit analysis
enginct, both asymplotically and i conjunction with

ing, Linear Algebra

I. INTRODUCTION

To take advantage of new processor designs, al
must also be redesigned. This is especially true ¢
lenging in the area of dense linear algebra, whe
algorithms are expected to run at close to the machii
performance. For example, LINPACK was redesignec
away from using vector algorithms that were usefi
vector machines of the 1970s, leading to the ne
Algebra PACKage (LAPACK) that uses blocked algor
cache-based processors. LAPACK itself had to be re
for multi-core and heterogencous many-core arch
which resulted in the Matrix Algebra on GPU and !
Architectures (MAGMA) library [15], [26].

This paper discusses the redesign of a mixed-preci
ative refinement technique to harness the fast FP16-
metic available in the latest NVIDIA GPUs. Mode
tectures are trending toward multiple floating-point a
precisions being supported in the hardware, and low
sions are often much faster than higher precisions. F
ple, single-precision, 32-bit floating-point arithmetic (
usually twice as fast as double-precision, 64-bit float

:2010.14373v1 [cs.DC] 27 Oct 2020

rt processors. While our emplnr:zl data will temper
the cnlhusmsm we also outline opportunities to “misuse™ these
dense matrix-multiplication engines if they come for free.

1. INTRODUCTION

With both Dennard’s scaling [1] and Moore’s law [2] gone.
computer scientists and architects are perhaps facing their
grandest challenge to date. Today, computer scientists are
actively chasing Post-Moore alternatives such as the intrusive
neuromorphic and quantum computers [3]. However. not all
options need to be intrusive. and some merely require us
to move away from traditional von-Neumann architectures.
Among the more salient of these options is architeetural spe-

NEKS000 [13]) or Deep Learning (DL) [14]. Today. there are
already a large bulk of application-specific (primarily DL)
accelerators that are based around systolic arrays [15] (essen-
tially GEMM engines), such as Huawei's Ascend 910 [16] and
Google Tensor Processing Units (TPUs) [17].

More importantly, the trend of adopting hardware accel-
eration for GEMM operations is coming even to general-
purpose architectures and their Instruction Set Architecture
(ISA). NVIDIA introduced the Tensor Cores [18] in the Volta,
Ampere, and Turing series of accelerators. Both Intel (with
Sapphire Rapids [19]) and IBM (with POWERI0 [20]) are
extending their SIMD-capabilities to support matrix operations,
with similar proposals by authors dating back a decade [21].
The unspoken question is: /s the inclusion of specialized matrix
engines in general-purpose processors truly motivated and
merited, or is the silicon better invested in other parts?

In this paper, we aspire to holistically look at the inclu-
sion of matrix engines ME hereaft to the
general-purpose processor and its expected impact on High-
Performance Computing (HPC) applications. It is important to
emphasize that we consider DL as one of many workloads in
HPC, and not the application we solely focus on. In this study,
we targel (o answer the following three question

cialization [4]. Hardware focuses on
application-specific core components to reduce the needless

energy tax [5] that a traditional von-Ng

« Does the and usage of matrix operations in
scientific workloads truly merit matrix engines inclusion
into general-purpose ISAS?

system demands. Instead, the aspiration is to maximize ddh\
locality and fully eliminate the operation control cost that
is continuously present in GPUs (e.g.. instruction fetching
and decoding, etc.) [6]. Architecture-specialization is not a
new concept in itself, where co-processors and accelerators
based on Field-Programmable Gate Arrays (FPGAS) [7]. [8].
Coarse-Grained Reconfigurable Architectures (CGRASs) [9].
or Application-Specific Integrated Circuits (ASICS) (e.g..
Anton [10] or Grape [11]) have continuously accompanied
computer systems in their historical road to performance.
Among the more popular candidates for architecture spe-
cialization, much thanks to the Timitless popularity of Deep-
Learning [12]. is to target General Matrix Multiplication
(GEMM). Targeting GEMM is perhaps not entirely unmo-
tivated: GEMM is often claimed to be the core compute-
intensive component in many scientific applications spanning
multiple domains, such as Computational Fluid Dynamics (e.g.,

« What performance benefits can we expect from using MEs
on existing scientific applications that can leverage them?

« Performance projection of using matrix engines on future
scientific workloads using a model empirically derived from
the NVIDIA V100 GPUS.

To answer the above questions, our contributions are:

« We inspect software management packages, historical batch
job records, profiles, and source code of a board set of HPC
and Machine Learning proxy applications and benchmarks
o identify dense matrix requirements,

« We provide a cost-benefit analysis of projected performance
gains from matrix engines, driven by resource usage per
domain in different production supercomputers.

« A detailed discussion of opportunities and challenges in
adopting matrix_engines. from the perspective of HPC
workloads.

Urbana, Illinois

{dakkak,cli99} @illinois.edu
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High Accuracy Matrix Computations on Neural Engines:
A Study of QR Factorization and its Applications
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ABSTRACT

Large-scale deep learning benefits from an emerging class of Al
accelerators. Some of these accelerators designs are general enough
for compute-intensive applications beyond Al and Cloud TPU is
one such example. In this paper, we demonstrate a novel approach
using TensorFlow on Cloud TPU to simulate the two-dimensional
Ising Model. TensorFlow and Cloud TPU framework enable the
simple and readable code to express the complicated distributed
algorithm without compromising the performance. Our code im-
plementation fits into a small Jupyter Notebook and fully utilizes
Cloud TPU’s efficient matrix operation and dedicated high speed
inter-chip connection. The performance is highly competitive: it
outperforms the best published benchmarks to our knowledge by
60% in single-core and 250% in multi-core with good linear scaling.
When compared to Tesla V100 GPU, the single-core performance
maintains a ~10% gain. We also demonstrate that using low preci-
sion arithmetic—bfloat16—does not ise the correctness of
the simulation results.

CCS CONCEPTS

+ Computing methodologies — Distributed simulation; Mas-
sively parallel and high-performance simulations; - Applied
computing — Physics; Mathematics and statistics;
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1 INTRODUCTION

‘The Ising model [13], which considers short-range interactions
between spin variables on the sites of a d-dimensional lattice, plays
an important role in statistical physics as a prototyping system
to study the universal behavior of critical phenomena. Many sig-
nificant breakthroughs in statistical physics are attributed to the
study of the model from either its computational or its theoretical
perspective. It is well known that the Ising model has no phase
transition in one dimension; however, it undergoes a second-order
phase transition between an ordered and a disordered phase in two
dimensions or more [5, 18]. The critical temperature T, at which
this phase transition occurs on a two-dimensional square lattice
was analytically solved by Lars Onsager [18], but it is still an open
problem in three or more dimensions. Computer simulation of-
fers a powerful alternative to study such systems and determine
critical temperatures, thanks to the development of finite scaling
theory (3] and availability of increasing computational power. This
approach ushered in a plethora of interdisciplinary applications
outside of physics, including bioinformatics [2], economics [21]
and operations research [11, 23].

Large-scale simulation of systems such as Ising model requires
a large amount of high performance computing resources, which
are usually available in multi-core computing architectures based
on distributed shared memory, or distributed clusters (ak.a data-
centers) with or nodes
seen in private or commercial clouds. Benefiting from the explosion
of machine learning, especially deep learning, commercial clouds
provide not only CPUs and GPUs, but also specialized chips such
as FPGAS and other in-house processors. The Tensor Processing

Shaoshuai Zhang, Elaheh Baharlouei, Panruo Wu
Department of Computer Science
University of Houston
{szhang36,ebaharlouei, pwu7}@uh.edu

and its ions. In of the 20th

on High-Performance Parallel and Distributed Computing (HPDC ’20), June
23-26, 2020, Stockholm, Sweden. ACM, New York, NY, USA, 12 pages. https:
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er expanding successful applications
d the great computational power de-
rocessors and accelerators are begin-
joating point arithmetic support, and
such as NVIDIA TensorCore on GPU
Unit (TPU) to accelerate the training
networks. It remains unclear how neu-
used in applications other than neural
esent an endeavor of accelerating and
trix factorization on neural engines—
may open doors to much wider rel-
ring, and data science. We show that
algorithms and implementations do
locality, parallelism, accuracy, and ro-
which are characterized by extreme

1 Introduction

Driven by the need to train large scale deep neural networks,
there’s been a tidal wave of the specialized low precision matrix
‘matrix multiplication units. Among them are TensorCore from
NVIDIA on its Volta and Turing architecture, Google’s Tensor Pro-
cessing Unit (TPU)?, and Intel’s latest FPGA, CPU, and Nervana
Neural Processors. These neural engines are usually characterized
by the support of lower precision arithmetic (such as 16-bit floating
point format), and extremely efficient matrix-matrix multiplica-
tion. For example, NVIDIA V100 boasts up to 120 “deep learning”
TeraFLOPS (120 x 10'2 floating point operation per second) [32],
which is half precision matrix multiplication accumulated in single
precision. Google’s TPU v3 claims 420 TeraFLOPS, also in doing
half precision matrix-matrix multiplication. In contrast, V100 single
precision peak performance is 14 TeraFLOPS, and double precision
is 7TeraFLOPS. Having these neural engines greatly speeds up ap-
plications that primarily spend time in low precision matrix-matrix
‘multiplication, and also results in much higher energy efficiency.

However, outside the neural networks, the effective use of such
neural engines is only emerging. Two challenges must be addressed
in using neural engines: 1) how to expose enough locality and
parallelism to enable neural engines to run at high speed? 2) how
to mitigate the loss of accuracy of using the limited half preci-
sion format? In this paper, we present an effective use of NVIDIA
TensorCore units to QR factorize matrix and its applications in
solving linear least square problems, orthogonalization, and low
iting — Solvers; Math icalsoft-  rank imation. Least square problem and its many variants
utations on matrices; » Theory of are prevalent in science, engineering, and statistical machine learn-
gorithms; Preconditioning; « Com- ing; for instance, non-linear least square problems are probably
n — Neural networks. the largest source of all non-linear optimization problems. As such,
QR factorization and its applications form a core component of
any linear algebra packages such as LAPACK [1] which have been
downloaded millions of times, and supported by all major processor
vendors.

ral engines can be effectively used to
ns (QR 3.0x-14.6x speedup compared

36.6TFLOPS); however different al-
chmidt) are needed to expose more
at the cost of increased computations.
finement, and other safeguarding pro-
gain accuracy and avoid overflowing.
ggest that presently with neural en-
ms (QR, LU, Cholesky) are best to be
ons (linear solver, least square, orthog-
ieve high performance and adequate

tlouei, Panruo Wu. 2020. High Accuracy
al Engines: A Study of QR Factorization

Unit ("Cloud TPU” or “TPU” for short)—an Al

integrated circuit (ASIC) developed by Google for neural network
machine learning—has received much attention in the machine
learning community [15, 16]. Its latest release, Cloud TPU v3, offers
420 x 10'2 floating-point operations per second (FLOPS) and 128GB
ofhigh bandwidth memory (HBM)". Multiple units are connected to
form a “POD” (Cloud TPU v3 Pod) through a dedicated high speed 2-
D toroidal mesh network, allowing up to 100+ peta-FLOPS and 32TB
of HBM! to be accessed by the application with very low latency
and in lockstep. TPU is programmable via software frontends such
as TensorFlow [1] or PyTorch [20], and can be deployed both for
training huge deep neural networks and for performing low-latency

*cloud google.comy/tpu/

Thus, we set to answer the following question: is it profitable to
use neural engines to accelerate common linear algebra operations
reliably and accurately? We use QR factorization to demonstrate
that the answer is yes, but new algorithms are needed to satisfy the
data locality and parallelism that neural engines need to run at full
speed and to compensate for the loss of accuracy and stability.

opies of all or part of this work for personal or
provided tht copies are not made or distributed
d that copies bear this notice and the full citation
ponents of this work owned by others than ACM
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SoC for Data Analysis Workloads

Need to handle matrix operations, so add a deep learning accelerator with a
spatial matrix multiplication unit

* Gemmini — Spatial-array DNN accelerator

Gemmini Accel. BOOM RV64GC Hwacha Vector Lane
- Vector
Controller > 3-wide lll """" ‘'H BPu HP Accel. Vector Execution
. Decode [~ gpg - Unit (VXU)
class DataSoC extends Config( ] | | —— ———
.. . . I e N\ Y e Sched Master Sequencer/
new gemmini.DefaultGemminiConfig minimininin Seq Expander
(gemmini.GemminiFPConfigs. 1 spatial ][] LB : B
BFl6DefaultConfig) ++ [|[(J[ Aray [ v ROB F---------
new hwacha.DefaultHwachaConfig ++ 0L U] Scalar E__\_”_?_F__E
new boom.common.WithNLargeBooms (1) ++ 000 32 KB 32 KB Unit
new freechips.rocketchip.subsystem. L1D$ L11$ \ /
WithInclusiveCache (nBanks=4) ++ 64 KB Acc. ||
new chipyard.config.AbstractConfigqg) 256 KB M v v 4 KB ||| Vector Memory
A
v
UART
512 KB L2 Cache BootROM
JTAG
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Customize DNN Accelerator

val defaultConfig =

GemminiArrayConfig[SInt, Float, Float] (
opcodes = OpcodeSet.custom3,
tileRows = 1,
tileColumns = 1,
meshRows = 16,
meshColumns = 16,

dataflow = Dataflow.BOTH,
inputType = SInt(8.W),
outputType = SInt(20.W),
accType = SInt(32.W),

acc_read full width = true,
acc_read small width = false,

pe_latency = 0,

val defaultFPConfig =

GemminiArrayConfig[Float, Float, Float] (
opcodes = OpcodeSet.custom3,
tileRows = 1,
tileColumns = 1,
meshRows = 8,
meshColumns = 8,

dataflow = Dataflow.WS,
inputType = Float(8, 8),
outputType = Float(8, 8),
accType = Float (8, 24),

acc_read full width = true,
acc_read small width = true,

pe_latency = 2,

30



What about software?

“Because many tasks on mobile phones are run on specialized processors,
Apple has hundreds of programmers who work to ensure the compatibility

of Apps across iPhone generations.” [1]

“‘Software Is The Hardest Word. Popular Al applications and
frameworks are built on Nvidia CUDA. Accelerator vendors
must port these applications to their chips.

Most don't offer full compatibility.

Thus, customer applications often fail to compile at first. Even
after compiling, performance may not be optimized” [2]

[1] Neil C. Thompson and Svenja Spanuth “The Decline of Computers as a General Purpose Technology: Why Deep Learning and the

End of Moore’s Law are Fragmenting Computing®
[2] Linley Gwennap, “Application-Specific Accelerators Extend Moore’s Law”, Keynote, Linley Fall Processor Conference 2020.



Accel. Integration into DNN Stack

DNN Model ResNet MobileNet BERT DLRM YOLO

DNN/ML Fram
ework

TensorFlow PyTorch Caffe MxNet

DNN Graph For
mats

ONNX NNEF

DNN Graph Co
mpilers

ONNX-Runtime XLA TVM Glow nGraph

Optimized Librar ‘
ies Gemmini

MKL-DNN cuDNN ATLAS OpenBLAS BLIS NVBLAS MKL Accelerate

SDK

Low-level
Language Runtimes

CUDA C/C++ OpenCL OpenMP Posix Threads

Operating Sy
stem

Linux Windows Android RTOS MacOS/iOS Bare-metal

Hardware CPU GPU TPU/NPU FPGA DSP




Gemmini SDK

val defaultFPConfig =

tileRows = 1,
tileColumns = 1,
meshRows = 8,
meshColumns = 8,

inputType = Float(8,

pe latency = 2,

outputType = Float (8,
accType = Float (8, 24),

acc_read full width =
acc_read small width =

GemminiArrayConfig[Float, Float, Float] (
opcodes = OpcodeSet.custom3,

dataflow = Dataflow.WS,

8),
8),

true,
true,

#ifndef
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define

typedef
#define
typedef

#define
#define
#define
#define
#define
typedef
typedef

#define
typedef
typedef

#define
#define

GEMMINI_PARAMS H
GEMMINI_PARAMS H

XCUSTOM_ACC 3

DIM 8

ADDR_LEN 32

BANK_NUM 4

BANK_ROWS 4096

ACC_ROWS 2048

MAX BYTES 64

MAX BLOCK LEN (MAX BYTES/ (DIM*2))
MAX BLOCK_LEN ACC (MAX BYTES/ (DIM*4))

uint16_t elem t;
ELEM T IS LOWPREC FLOAT
float acc_t;

ELEM T IS FLOAT
ELEM T EXP__ BITS 8
ELEM T SIG BITS 8
ACC T EXP__ BITS 8
ACC T . SIG BITS 24
u1nt16 t elem t bits;
u1nt32_t acc_t_blts,

HAS MVIN SCALE
float scale_t;
uint32_t scale_t bits;

ACC_READ_SMALL_WIDTH
ACC_READ FULL_WIDTH
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Numerical Computing Stack

Numerical Computing
Applications

Optimization | | Signal Processing Control Simulation Statistics

High-level _
Numerical Packages SciPy caret glmnet JuMP Flux

Numerical
Computing Tools NumPy R Julia Matlab

Optimized )
Numerical Libraries LAPACK libFlame

MKL Eigen
OpenBLAS || ATLAS Accelerate

Optimized Basic

Libraries Netlib BLAS BLIS NVBLAS

Low-level

Language Runtimes CUDA C/C++ OpenCL OpenMP Posix Threads

Operati :
Sp;srtaelr:g Linux Windows Android RTOS MacOS/iOS Bare-metal

Hardware CPU GPU




Numerical Computing Stack

Numerical Computing
Applications

Optimization | | Signal Processing Control Simulation Statistics
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Numerical Computing Stack

Numerical Computing
Applications
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High-level _
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Numerical Computing Stack

Applications Optimization | | Signal Processing Control Simulation Statistics
High-level
Numerilga| :;/(e;kages SciPy caret glmnet JuMP Flux
Numerical
Computing Tools NumPy R Julia Matlab
Optimized _
Numerical Libraries LAPACK libFlame .
Eigen
OpenBLAS MKL Accelerate
Optimized Basic| Netlib BLAS || BLIS | NVBLAs || ~P" ATLAS
Libraries —
Gemmini SDK
Low-level
L anguage Runtimes CUDA C/C++ OpenCL OpenMP | | Posix Threads
O ti .
Systom Linux Windows Android RTOS MacOS/ioS | | Bare-metal

Hardware CPU GPU




BLAS

e “All roads lead to Reme BLAS”

* BLAS-1 — vector operations
* BLAS-2 — matrix-vector operations
* BLAS-3 — matrix-matrix operations

* Widely-adopted API (together with
LAPACK):

* ABI compatibility
e Accepted Nomenclature (XYYZZZ_):
* X —datatype
* YY — matrix type
 //Z — computation type

https://www.openculture.com/2018/05/an-interactive-map-shows-just-how-many-roads-actually-lead-to-rome.html

 Self-documenting decomposition for
high-level numerical algorithms



- I 5t loop around micro-kernel l
[1 ] Ne L | ne
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+=

* Based on the Goto/BLIS algorithm [2] , Ermrm—
* Like OpenBLAS/GotoBLAS G z o
e Streaming into L1 rather than keeping data in L1 =

* Packing into block-panel structure

* Portable, Template-based, Open-source
* Architecture-specific code encapsulated in

microkernels o
* Three compute micro-kernels: GEMM, TRSM,

GEMMTRSM o
e Other kernels can be overrides for specific Upcate

architectures

* Generates a complete optimized BLAS API
implementation

>
S

[1] Field G. Van-Zee, and Robert A. van de Geijn “BLIS: A Framework for Rapidly Instantiating BLAS Functionality”, ACM Transactions on Mathematical Software (TOMS) 41.3 (2015): 1-33.
[2] Goto, Kazushige, and Robert A. van de Geijn. "Anatomy of high-performance matrix multiplication." ACM Transactions on Mathematical Software (TOMS) 34.3 (2008): 1-25.



Will it work out-of-the-box? (No)

Apblicat Optimization | | Signal Processing Control Simulation Statistics
pplications
High-level :
Numerical Packages SciPy caret glmnet JuMP Flux
Numerical
Computing Tools NumPy R Julia Matlab
Optimized )
Numerical Libraries LAPACK libFlame .
Eigen
OpenBLAS MKL Accelerate
- | Netib BLAS || BLIS || NvBLAS || ~P°" ATLAS
Optimized Basic

Libraries Gemmini SDK
Low-level .
Language Runtimes CUDA C/C++ OpenCL OpenMP Posix Threads
@) ti .
Systom Linux Windows Android RTOS MacOS/ioS | | Bare-metal

Hardware CPU GPU




* BLAS is only floating point

e Accelerator numerics

 Edge DNN accelerators likely
to have Int8, FP16 or BF16

* Would low precision work
for general-purpose
workloads?

* Should be sufficient for basic
statistics (depending on data
precision)

* Probably shouldn’t use for
weather/nuclear simulations

 Numerical stability

Accelerator Numerics

Matrix Multiplication Accelerator Numerics

Int4 Int8 Int16  fpl6 bf16 fp32 t£32!

NVIDIA Volta TensorCore
NVIDIA Ampere TensorCore
Google TPUv1
Google TPUv2
Google TPUv3
Intel AMX

AWS Inferentia
AWS Trainium
Qualcomm Hexagon
Huawei Da Vinci ?
MediaTek APU 3.0
NVIDIA DLA 14
Samsung NPU °
Tesla NPU
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BLAS Numerics
4—Numerlcal

e BLAS does not have a standard low- e [ o amamiootere |—— Precision
precision API ’ ‘ i

* How do current HPC applications deal
with low precision?

* End-to-end mixed precision algorithms
(“under the hood”) [1]

* Application-level static analysis and explicit
replacement (Precimonious [2])

 We would like to integrate at the BLAS
level for transparent integration with
higher-level apps (NumPy, etc.)

[1] Azzam Haidar et al. “Harnessing GPU tensor cores for fast FP16 arithmetic to speed
up mixed-precision iterative refinement solvers
[2] C. Rubio-Gonzalez et al. “Precimonious: Tuning assistant for floating-point precision” |\.




BLAS Numerics
4—Numerlcal

o RELAXED_NUMERICS environment = (5 toop sraunc mire-cernel |——— Precision
variable "
e Coarse-grain control

* Not all applications actually need single-
precision (depends on source data
precision)

* Maintain a single-precision API, but
perform GEMM computation in BF16 if
RELAXED NUMERICS environment is
true

e Automatically fallback on FP32 in vector
unit

* Enables transparent integration with
deep legacy software stack




BLAS Data Layout

* Data layout: row-major vs column-major
* Gemmini assumes row-major
* Transposed computation in BLAS

 Hardware Transposer in Gemmini
* Was already there for OS dataflow

e Low-cost (1% compared to compute array ,
area). Just need to expose to software

Ne

g
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+=
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Precision

Data Layout
(Row-major vs.
Column-major)



BLIS

— Numerlcal

e Kernels vs. Micro-kernels e o womamiroten Precision
e GEMM Z T B
* TRSM
» TRMM, SYMM, SYRK, etc. : [eemsonimoours]
* Micro-kernel: good and bad 4=
* Good: Generalized for multiple BLAS-3 | i Kermols ve.

ke rnels - ‘ 3" |oop around micro-kernel
 Bad: Assumes fixed-size hardware I

Micro-kernels
/(pack + convert)
support (not good for variable length

vectors or zero-padded matrix units with op ool | P S Data Layout
hardware sequencers) ¢ “ (Row-major vs.
) + Column-major)

* Kernel: e ——
* Good: Optimized end-to-end et

* Bad: Development time for each new
uarch

}s




BLIS

* On-the-fly conversion vs. L2
pack+convert
 TPU vs. Intel AMX

e DMA bandwidth vs. vector
unit conversion bandwidth
and fencing

* Hardware controller flow
continuity and Gemmini
latency-hiding

e Zero padding

 Hardware-padding in kernel

* Software-padding for micro-
kernel, due to fixed ukernel
size

sgemm

120 A

80 -

GFLOPS

60 -

40 A

20-5 %/
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0 500 1000 1500 2000 2500 3000

Matrix Dimension (m)
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3500

4000

4500

=== BOOM+Hwacha + 8x8 BF16 Gemmini (DMA conversion, BLIS loops)
= BOOM-+Hwacha + 8x8 BF16 Gemmini (DMA conversion, Sandbox loops)

= BOOM+Hwacha + 4x4 BF16 Gemmini (DMA conversion, Sandbox loops) === BOOM+Hwacha + 8x8 BF16 Gemmini (Software conversion, BLIS loops)

== BOOM+Hwacha + 4x4 BF16 Gemmini (Software conversion, BLIS loops)



— Numerical

* And more.... - 5o sroundmicotamel |—— Precision

. 5 Z g
* Small Matrices e
* BLAS-3 - Register blocking size | |
‘ 4™ loop around micro-kernel |
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BLAS-3 Performance

strmm
¢ GEIV”VI: 95'98% UtilizatiOn 100 A
* TRMM/SYRK/SYMM
* Micro-kernel-based implementations °
40 A
* 60%-70% utilization on 8x8 Gemmini N
* 80%-90% utilization on 4x4 Gemmini me e
. Matrix Dimension (m)
* Need |la rge matrices for good e o Tt Lot
utilization -
* >1000 for GEMM
100 A
* Residual norm~ 107> — 1077 e
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Matrix Dimension (m)

== BOOM+Hwacha + 8x8 BF16 Gemmini (DMA conversion) )

—— BOOM+Hwacha + 8x8 BF16 Gemmini (Software conversion )




Matrix Decompositions

* Matrix decompositions as core linear
algebra kernels

* LU and Cholesky decompositions for
linear system solve

* QR, SVD for least squares solutions and
low-rank approximation

* Diminishing returns with matrix unit
compared to vector unit
 Amdahl’s Law

e 1.9x-3.8x speedup using vector unit over
scalar processor

* 1.06x-1.3x speedup using 4x4 Gemmini
over vector unit

 1.05x—1.18 speedup using 8x8 Gemmini
over 4x4 Gemmini

Cholesky LU QR SVD

EE BOOM s BOOM + Hwacha + 4x4 BF16 Gemmini
7278 BOOM + Hwacha B= BOOM + Hwacha + 8x8 BF16 Gemmini

Matrix decompositions on 1600x1600 square matrix



Matrix Decompositions

* SVD - bidiagonalization limited to
BLAS-2
* ~50% of the operation count
e Limited speedup to ~2x (Amdahl’s law)

* Cholesky — slowdown with Gemmini
* Micro-kernels in BLIS
e Recursive LAPACK algorithms

Cholesky LU QR SVD

EE BOOM s BOOM + Hwacha + 4x4 BF16 Gemmini
7278 BOOM + Hwacha B= BOOM + Hwacha + 8x8 BF16 Gemmini

Matrix decompositions on 1600x1600 square matrix



O tearn R
Python Apps S o < — &
, \ [/// J7 NumPy

!

/usr/lib/libblas.so

SciPy and Scikit-Learn
* Full-stack applications Symbolc ik
* Data-scientist perspective

blis/obj/gemmini/libblis.so ‘ blis/obj/riscv64/libblis.so

e Speedups similar to matrix
decompositions

* PCA

 Randomized SVD => higher speedup
than SVD.

* Linear Models
e Ridge slowdown

 Scikit-learn LinearRegression vs. LAPACK
GELS least squares

Linear Linear Linear PCA Ridge. K-means

Least Regression System Regression Clustering
Squares Solve
(GELS) (GESV)

= BOOM @& BOOM + Hwacha + 4x4 BF16 Gemmini

A BOOM + Hwacha == BOOM + Hwacha + 8x8 BF16 Gemmini



But.....

* Are DNN accelerators actually a good
fit for general numerical data analysis
matrix operations?

* The arithmetic intensity of BLAS-3
operations in general numerical data
analysis kernels is much lower than
DNN models

* More smaller matrices
 More rectangular matrices

0.6

0.5

0.0

20

40 60
Arithmetic Intensity

80

Workload
ResNet-50

QR Decomp.

SVvD

100
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But.....

* Example ResNet-50 matrix shapes

. 0.6 orkloa
(batch size 1): " RashLes0
« m=784, n=512, k=256 05 SR
* m=784, n=256, k=512 o
* Example QR decomp. matrix shapes £
$ 0.3
()]

(block size 32):
* m=7096, n=305, k=32 0.2
m=305, n=32, k=7096

0.1
* m=7192, n=7192, k=32 |
— — _ (11 A0 |
* m=7192, n=32, k=7192 00 0 .0 0 o 100
* m=7192, n=32, k=32 Arithmetic Intensity
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But.....

* While relatively low arithmetic
intensity can easily saturate a typical
1D vector unit, many low arithmetic-
intensity shapes becomes memory
bound when using a DNN accelerator
such as Gemmini.

e Scheduling becomes important

 Static scheduling
* Dynamic scheduling

* Hardware scheduling using
accelerator controller

Performance [FLOP/cycle]

102

| = 4-wide vector unit reference
1 = 8-wide vector unit reference

10! y

— 8x8 BF16 Array, 8 Bytes/cycle BW

== Scalar CPU reference

272 20 2 24

Arithmetic Intensity [FLOP/byte]

26
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Gemmini Hardware Controller

Spatial Array

* Fine-grained instructions (RISC) vs. L DA

coarse-grained instructions (CISC) - }

Matmul op transfer

* Finite-state machine implementation
* Hardware-managed scheduling
* Hardware-managed operation dispatch
* Hardware-managed double buffering

atchpad address

e Scheduling resource allocation
managed through software-controller
and feedback-controlled arbiters.

Scratchpad/DRAM address

* Can we improve the FSM to better ey et 2 -y
handle small, rectangular matrices? F bt K

T T
k i
Loop iterators




Static Scheduling

e Scheduling of memory load
operations (A, B operands) in
memory-bound workloads

* Managed in software °0

(Programmable AWEIGHT)
e Coarse-grained
 Domain-knowledge

* Managed in hardware
(adaptive policy)
* Based on FSM iterator values
e 2 muxes and 2 comparators T men a2 si2c2 obaz  Ghese eeS1z 2ees 51220 51228

512x32 32x512 32x32 32x128 256x32 512x32 64x128 128x128 128x256
o S | h d | . Operand Matrix Shapes

Imp e ar Wa re po Icy IS Il HW-Managed Policy N2 AWEIGHT=2 == AWEIGHT=4
SUff|C|ent and better B AWEIGHT=1 WmEM AWEIGHT=3 @ AWEIGHT=5

40 A

Compute Array Utilization (%)
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Dynamic Scheduling

e Variable memory tail-latency

e Caches
e DRAM scheduler
e Fabric

* Double-buffering => in-order execution

* Decoupled access-execute

* Double-buffering hides variable latency

e What if the matrix is too small to be

double-buffered?

e Qut-of-order execution
e Micro-threads

90 1

80 A

Compute Array Utilization (%)

70 1

60 -
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- 3000

- 2000

- 8000

- 7000 0

- 6000

- 5000

DMA Transaction Tail Latency (Cycle

- 1000

v
®
\
\
\
\\
\ ®
* I
\ / o
\\ I.
&o
.’
R |
o’
-0-¢ - R --g-0" %
o 7" 70%e ' \
21 23 25 27 29 o1 213

Dirty LLC Cache Lines (Uniformly Distributed)

= FR-FCFS -@ FCFS

32x1000 times 1000x32 matrix multiplication
With different starting cache state
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Dynamic Scheduling

e 000 in accelerator controller

* Dependencies within the static schedule
on a single cache line

* Load issuing can remain in-order, only
execute/store 000

 Commutativity of accumulation =>
hardware-controlled micro-threads

* Allocation of reservation station resources
between micro-threads

 Results demonstrate tolerance to tail
latency at the beginning of execution,
but not at the end of execution

* Only 2%-10% overall utilization drop due
to tail latency, as opposed to 10%-30%

DIM

DIM

DIM

DIM

DIM

CL

DIM

DIM

DIM

DIM

DIM
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Conclusion (Technical Portion)




Summary

* Custom SoC Design
* Open-source & generator-based IP
* Chipyard
* Multi-flow framework
* HW/SW co-design

* Customization for Numerical Data Analysis
SoC with 1D + 2D data-parallel accelerators
Secondary-use of DNN accelerator

Software mapping

Customization based for small, rectangular
matrices for numerical data analysis
algorithms

Numerical Computing

pppppppppppp lOptimization H Signal Processing || Control H Simulation H Statistics |
| ViLag ‘ SciPy | ‘ caret H glmnet ‘ ‘ JuMP H Flux |
Numerical Computin
Tools P ‘ NumPy | ‘ R | ‘ Julia | ‘ Matlab ‘
opmﬁi’: uuuuuuu I LAPACK libFlame “
igen
MKL
OvtmizeaBasic [ NetlibBLas || Bus || nveLas | OpenBLAS || ATLAS Accelerate
Lang::;:::i iiii ‘ CUDA ‘ ‘ C/C++ | ‘ OpenCL | ‘ OpenMP | | Posix Threads |
Opvesr;ling | inux ‘ | Windows ‘ | Android H RTOS ‘ | Mac0s/ios ‘ | Bare-metal ‘
ardwa [ v |[ e ]
Gemmini Accel. BOOM RV64GC Hwacha Vector Lane
- Vector
m 3-wide  1-vn"o ‘H BPU HP Accel. Vector Execution
—|[L.Becode [I” re - Unit (VXU)
] :! :! !:! !: U R -m Master Sequencer/
] L JU Seq. Expander
[]1[ spatial ][] w8 || —— ||
[ Array [ ] w ROB ro: z
- — m r-- VRF -
(I I , [ ] Scalar [Tl T
oot 32 KB 32 KB Unit w
[eakBAce. ][, |IL_L1D$ L1I$
256 KB M v v 4 KB ||| Vector Memory
scratchpad ||Aq[f Tilelink Crossbar Vi$ Unit (VMU)
L] A
| UART | v
512 KB L2 Cache BootROM
| JTAG |
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* The “non-research” aspects that
consumed 90% of time

* Open Source Academic Artifacts

* Longevity of an academic software
artifact beyond the paper deadline

* User support
* Documentation

e Education
e Gemmini in class
e Chipyard in classes

* Enabling cross-class collaboration
without excessive pre-requisites

Search docs

1. FireSim Basics
2. Initial Setup/Installation
3. Running FireSim Simulations

4. Building Your Own Hardware Designs
(FireSim FPGA Images)

Docs » Welcome to Chipyard’s documentation! © Edit on GitHub

Welcome to Chipyard’'s documentation!

tJCHIP

Chipyard is a a framework for designing and evaluating full-system hardware using agile teams. It is
composed of a collection of tools and libraries designed to provide an intergration between open-
source and commercial tools for the development of systems-on-chip. New to Chipyard? Jump to
the Chipyard Basics page for more info.

Quick Start

Requirements

Chipyard is developed and tested on Linux-based systems.

= 1.1.1. Single-Node Simulation, in Parallel
= 1.1.2. Datacenter/Cluster Simulation

Computer
Architecture
Class

Custom SoC
Configuration
L]
RTL Generators
RISC-v Accelerators Multi-level Peripherals Cus_tom
Cores Caches Verilog
[ v \
RTL Build Process
Intermediate
RISC-V Representation Process
Software Technology
¥ k2
FireSim VLSI
Transforms Transforms
| BN ¥
FPGA- Software Automated
Accelerated RTL VLSI
Simulation Simulation Flow

Special Topics
Classes

Digital
Integrated Circuits

Class 6 1




	Generator-Based Custom SoC Design For Numerical Data Analysis
	Motivation
	Motivation
	We Need All!
	The Integrated SoC
	This Talk
	Trends in Open Source Hardware
	Building An Open Source RISC-V System
	Building An Open Source RISC-V System
	Hardware Generators
	Building An Open Source RISC-V System
	Chipyard
	How is this integrated? Generators!
	How is this integrated? Generators!
	How is this integrated? Generators!
	How is this integrated? Generators!
	Software
	HW/SW Co-Design
	Customizing an SoC for Numerical Data Analysis Workloads
	Numerical Data Analysis
	SoC for Data Analysis Workloads
	SoC for Data Analysis Workloads
	SoC for Data Analysis Workloads
	SoC for Data Analysis Workloads
	Customization
	DNN Accelerators
	DNN Accelerators
	Secondary-Use of DNN Accelerators
	SoC for Data Analysis Workloads
	Customize DNN Accelerator
	What about software?
	Accel. Integration into DNN Stack
	Gemmini SDK
	Numerical Computing Stack
	Numerical Computing Stack
	Numerical Computing Stack
	Numerical Computing Stack
	BLAS
	BLIS [1]
	Will it work out-of-the-box? (No)
	Accelerator Numerics
	BLAS Numerics
	BLAS Numerics
	BLAS Data Layout
	BLIS
	BLIS
	BLIS
	BLAS-3 Performance
	Matrix Decompositions
	Matrix Decompositions
	Python Apps
	But…..
	But…..
	But…..
	Gemmini Hardware Controller
	Static Scheduling
	Dynamic Scheduling
	Dynamic Scheduling
	Conclusion (Technical Portion)
	Summary
	Education and Open Source

