
Accelerating General-Purpose Linear Algebra on
DNN Accelerators

Alon Amid†§, Hasan Genc*, Jerry Zhao*, Krste Asanović*, Borivoje Nikolić*, Yakun Sophia Shao*
*University of California, Berkeley, †Microsoft

{alonamid,hngenc,jhz,krste,bora,ysshao}@berkeley.edu

Abstract—Deep learning inference and training tasks are often accom-
panied by additional numerical data analysis tasks such as clustering,
dimensionality reduction, data transformation, and linear modeling.
While matrix engines are primarily designed with deep neural network
workloads in mind, they have also been used to accelerate general-purpose
matrix processing workloads. The matrix multiplication components of
numerical data analysis workloads vary in matrix shapes, sizes, and
layouts compared to deep neural network models. In this wide problem
space, subtle static scheduling or system-level effects generate variable
memory-latency behavior observed by the accelerator in small matrix size
regimes, leading to up to a 30% degradation in accelerator utilization.
We observe that minor modifications to a matrix accelerator’s hardware
controller can substantially improve the suitability of the accelerator for
these problem types, and demonstrate up to a 1.25× improvement in
the utilization of a matrix engine on small matrices through hardware-
managed static scheduling, and up to a 1.15× improvement through dy-
namic scheduling and hardware-managed commutative micro-threading,
helping improve the utilization of matrix engines for general purpose
linear algebra workloads.

I. INTRODUCTION

While deep neural networks (DNNs) have dominated the machine
learning domain in the past decade, they have not completely
displaced traditional numerical data modeling techniques. DNNs
have captured much of the attention of the hardware community
in recent years due to their high computational cost dominated by
a small number of high-arithmetic-intensity kernels, but they are
regularly accompanied with complete data processing pipelines [15],
often consisting of additional data modeling and analysis techniques.
Dimensionality reduction [16] and clustering [11], [22] during pre-
or post-processing, exploratory or explainable modeling using linear
models [6], and transformations based on system of equations, all
integrate into data modeling and analyses pipelines.

The number of dedicated accelerators on SoCs has steadily in-
creased in the past decade, with specialized accelerators accounting
for over 60% of the area in recent SoC designs [17]. At the same time,
these accelerators experience low, bursty utilization (with respect to
absolute time), due to their single-function/few-function design goals.
This work focuses on expanding the use of DNN accelerators for
general-purpose linear algebra and numerical data analysis [7], [10],
[23]–[25].

II. MATRIX ENGINES FOR DATA ANALYSIS VS. DNNS

Numerical data analysis methods and tools typically rely on
several core numerical linear algebra algorithms such as exact or
least-squares solutions of linear systems, together with basic matrix
operations such as matrix multiplications and matrix factorizations
such as Choleksy, LU, QR and singular value decomposition (SVD).
While both DNNs and the linear algebra kernels at the basis of
numerical data analysis workloads are dominated by matrix-matrix
operations, they differ in several key characteristics which limit the
efficiency of DNN accelerators for such a mix of workloads. In
particular, the spectrum and diversity of matrix shapes and sizes that

§Work done while at the University of California, Berkeley

0 20 40 60 80 100
Arithmetic Intensity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

De
ns

ity

Workload
ResNet-50
QR Decomp.
SVD

Fig. 1: Arithmetic intensity histogram of matrix-matrix operations
(GEMM, TRMM) within a batch-1 ResNet-50 DNN forward pass,
and a blocked-Householder QR decomposition and SVD of the UCI
Human Activity Recognition training dataset with block-size 32 (the
LAPACK default). Operands are 16-bit floating point datatypes, and
results are 32-bit floating point datatypes.

need to be processed highlights differences between DNNs vs. the
broader category of numerical data analysis.

In order to obtain high performance in systems with multi-level
memory hierarchies, optimized linear algebra libraries use blocking
techniques or recursive implementations to reduce communication
across the memory hierarchy. Cache blocking through outer products
in matrix multiplication is a popular blocking technique. However,
blocking techniques and recursive implementations are also used in
more complex matrix decompositions such as Cholesky, LU, and
QR factorizations with the goal of operating on “blocks” using high-
arithmetic-intensity matrix-matrix operations. LAPACK [2], a widely
used open-source high-performance numerical computing library,
uses blocking techniques to boost the arithmetic intensity of a series
of matrix-vector operations by grouping them into matrix-matrix
operations. However, the resulting matrix operations can differ in
their shapes and sizes from matrices found in typical DNN models.

In particular, these blocking and reduction techniques can generate
non-square matrices which cause numerical data analysis workloads
to exhibit much lower arithmetic intensity than DNN workloads.
Figure 1 illustrates the difference in arithmetic intensity between
the matrix multiplications in ResNet-50, as a representative DNN,
compared to common matrix decompositions used in data analysis
applications, performed on a data matrix from the UCI Human
Activity Recognition dataset [3]. Even though the DNN is run
with the smallest possible batch size of 1, it still achieves a much
larger arithmetic intensity than the matrix decompositions, which are

1



2 2 20 22 24 26 28

Arithmetic Intensity [FLOP/byte]

101

102

Pe
rfo

rm
an

ce
 [F

LO
P/

cy
cle

]

16
x1

00
0 

X 
10

00
x1

6 
GE

M
M

32
x1

00
0 

X 
10

00
x3

2 
GE

M
M

64
x1

00
0 

X 
10

00
x6

4 
GE

M
M

12
8x

10
00

 X
 1

00
0x

12
8 

GE
M

M

25
6x

10
00

 X
 1

00
0x

25
6 

GE
M

M

51
2x

10
00

 X
 1

00
0x

51
2 

GE
M

M
10

24
x1

00
0 

X 
10

00
x1

02
4 

GE
M

M

8x8 BF16 Array, 8 Bytes/cycle BW
Scalar CPU reference
4-wide vector unit reference
8-wide vector unit reference

Fig. 2: Theoretical peak performance roofline model for a representa-
tive DNN matrix engine, in comparison to reference CPU and vector
units. DRAM bandwidth for all design points is 8 bytes/cycle.

based on the default LAPACK implementations of SVD and QR
decompositions with default block-sizes of 32.

A deeper analysis of these workloads reveals that matrix decompo-
sitions contain a diverse set of small and rectangular matrix shapes,
while the DNN model’s matrices are less rectangular. For example,
using a notation of M ×K times K ×N matrix operations, in the
QR decomposition we observe many operations with small values
of M and N but large values of K, as well as operations with a
large value of M but with small values of K and N . A collection
of triangular matrix multiplication (TRMM) operations in the matrix
decompositions particularly represent a series of smaller operations,
with the triangular matrix dimensions being equal to the block size
(32). In contrast, in DNN inference, the dimensions of many layers
are of the same order of magnitude. This is the case for ResNet-50,
except for the first few layers, which exhibit large values of M with
small values of K and N , and the last layers which exhibit small
values of M with larger values of K and N .

Increasing the block-size increases the arithmetic intensity of
matrix factorizations, but in some cases can come at the cost of
an increased number of floating-point operations that the blocked
algorithms must perform on the exact same input. While some matrix
factorizations, such as LU, can simply re-arrange operations to obtain
higher arithmetic intensity, others, such as QR and SVD, require
additional arithmetic steps in order to group operations into matrix-
matrix procedures. This leads to a tradeoff between the desire to
increase the block size in order to achieve higher utilization of
the matrix engine in the DNN accelerator through higher arithmetic
intensity vs. potentially increasing the operation count so much that
it outweighs the benefits of faster and more efficient execution on the
accelerator. However, these small block sizes can present a challenge
for matrix engines in DNN accelerators, whose performance depends
on the arithmetic intensity of each of the matrix operations executed
on the accelerator. For matrix factorization algorithms, small block
sizes generate small and non-square matrix shapes, which limit the
arithmetic intensity and data re-use within a dedicated matrix mul-
tiplication accelerator. Zhang et al. [24] make a similar observation
within the context of NVIDIA GPU tensor cores, and demonstrate the
decrease in performance beyond a certain optimal block size tuned
for NVIDIA GPUs.

Arbiter

k
Ld AGen

Reservation 
StationLd/Ex/St

Utilization

Loop Unroller FSM

j i k
Ex AGen

j i
St AGen

j i

LdQ ExQ StQ

Legend
Loop iterator
Memory address
Gemmini command

Fig. 3: Gemmini matrix multiplication hardware FSM controller.

Figure 2 illustrates the roofline model [21] of an 8×8 matrix
engine (with bfloat16 operands and single-precision accumulators),
compared to reference vector units (128-bit datapath, and 256-bit
datapath) and a scalar CPU. The arithmetic intensity of matrix
multiplication for several matrix shapes is noted on the diagram
for reference, with the shared dimension remaining constant (1000),
while the product dimensions are increased (similar to the increase
of the block size). As Figure 2 indicates, while blocking factors
of 32 may well be within the realm of compute-bound problems
for traditional CPUs and vector units, modern DNN matrix engines
require a higher level of arithmetic intensity for peak utilization.
These heterogeneous matrix shapes and sizes come also into play
within higher-level layers of the data analysis software stack, such
as in k-means clustering, where “tall-and-narrow” data matrices can
lead to low accelerator utilization.

In order to maximize performance and utilization using matrix
engines within both compute-bound and memory-bound regimes
across a diversity of matrix shapes and sizes, the scheduling of
compute and memory operations on these accelerators needs to be
customized to meet the workload requirements.

III. MATRIX ENGINE CONTROLLER SCHEDULING

DNN accelerators typically utilize a controller to schedule memory
transactions and compute resources within the accelerator. These
controllers range from fully programmable processors to fixed hard-
ware finite state machines (FSMs), including potential hierarchies
of controllers within an accelerator, enabling different levels of
programmability [4], [5], [14], [18], [20]. For example, the Gemmini
DNN accelerator [8], which we focus on for the evaluation in
this work, is equipped with a FSM which divides a large matrix
multiplication problem (defined as C = AB +D), into a sequence
of smaller matrix multiplications executed on a spatial array (of
dimension DIM × DIM ). Each of the smaller operations, which
we refer to as individual “Gemmini commands”, can be at most
DIM × DIM large, and is issued to either an execution queue,
which performs these small multiplications, or a load or store queue,
which performs DMA transactions. Figure 3 illustrates the high-level
structure of the Gemmini matrix multiplication hardware controller.

The scheduling of memory and compute operations on accelerator
resources has a direct impact on the overall utilization of the acceler-
ator. The scheduling of matrix multiplication operations on CPUs has
been extensively researched with evaluation choices and placements
of stationary and streaming data across the memory hierarchy [9]. The
scheduling of matrix multiplications on DNN accelerators exhibits
similar characteristics, with the addition of constraints set by the

2



accelerator’s spatial resources and fixed interconnects, as well as the
private accelerator memory management policy [12]. Recent work
by Jeong et al. [13] has identified some of the under-utilization
challenges of systolic array matrix accelerators with small memory
systems as a result of the matrix dimensions, memory latency, and
pipeline fill/drain delays, with the first two dominated by control
and scheduling within the accelerator. Unlike DNN models, where
tensor shapes and weight values are known at compilation time and
can therefore be optimized and scheduled based on static analysis,
numerical computing libraries such as LAPACK and BLAS are
often designed to assume runtime-dynamic matrix shapes and sizes.
This runtime flexibility requirement entails that the DNN accelerator
matrix engine controller needs to be able to make independent matrix
compute and memory operation scheduling decisions, without relying
on an optimal statically analyzed software schedule.

The Gemmini controller uses hardware-managed double buffering
as a latency-hiding technique. As such, the private scratchpad memory
and accumulators are split by the controller into two partitions, where
the data in one partition gets used for computations while the data
in the other partition gets used by the DMA for moving data to
and from main memory. This approach can sustain full utilization of
the accelerator as long as the number of cycles it takes to perform
computation on the data in a partition is longer than the number
of cycles it takes to move data from main memory into the second
partition. However, this technique is not able to hide latency in cases
where the operand matrices are smaller than the size of the accelerator
private scratchpad memory. In such cases, there is not enough data to
overlap the compute of one partition with the memory movement of
the other partition. In those scenarios, the utilization of the accelerator
becomes sensitive to the scheduling decisions made by the controller.

In Gemmini’s weight-stationary (WS) dataflow configuration,
DIM × DIM data elements of the second operand matrix (the
B matrix, also referred to as a “weights” matrix in deep learning
workloads) are resident within the systolic array processing units
(PEs), while data elements of the first operand matrix (the A matrix,
or “activations” matrix in deep learning workloads) stream into the
array from the private scratchpad memory. The output data elements
(matrix C) propagate through the systolic array and accumulate into
a wide accumulator SRAM within the accelerator. As such, when
the target matrix operation is of high arithmetic intensity, given
this streaming schedule the controller should schedule more memory
operations for the A matrix rather than the B matrix in order to
minimize latency. However, when the matrix operation is of low
arithmetic intensity, there is less data re-use within the accelerator
memory hierarchy, and as the roofline model dictates, the operation
may be bound by memory bandwidth. Hence, for example, for the
case of a tall and narrow B matrix it would be more beneficial
to schedule A and B memory operations at a “symmetric” rate,
as opposed to the method of choice for high arithmetic intensity
operations of an “asymmetric” rate with more A memory operations
due to the streaming nature of A in a WS dataflow systolic array.

The accelerator controller must also be able to handle scheduling
decisions impacted by dynamic properties of shared resources within
the SoC. In our Chipyard SoC evaluation system [1], the main shared
resource used by Gemmini is the SoC memory system. The Gemmini
DMA can generate many load and store requests to the SoC memory
system, and the responses to these requests can return in variable
latency and out-of-order. The Gemmini DMA keeps track of these
memory transactions and handles their ordering upon their return.
Unlike the DMA, the Gemmini execution command queue supports
only in-order execution. This is an efficient design point under

Ld Address 
Generator

Loop Unroller FSM

k
LdA AGen

i k
LdB AGen

j

Ld ArbiterWeightA

Legend
Memory address
Loop iterator

Fig. 4: Arbitration mechanism between A matrix and B matrix loads
in Gemmini’s load-address generator (which is part of the matrix
multiplication FSM illustrated in Figure 3).

the assumption of double-buffering and high data re-use within the
scratchpad, which together mean that data should be readily available
within the private scratchpad when commands are dispatched to the
execution command queue. However, when the operand matrices are
smaller than the size of the accelerator private memory and do not
enable double-buffering, the variable latency of the shared memory
system can impact the utilization of the compute array due to front-
of-line blocking of the execution command queue.

Variable DMA transaction tail latency can occur for a variety of
reasons, including quality of service (QoS) policies across SoC buses
and fabrics, as well as interrupts and other asynchronous events within
the system. When the operand matrices are big enough to be double-
buffered, this type of tail latency can be hidden. For this reason,
an in-order execution command queue is generally a sufficient and
efficient choice for DNN accelerators, but may be insufficient for
broader classes of workloads.

IV. MATRIX ENGINE CONTROLLER ADAPTATIONS

We demonstrate how simple and inexpensive improvements within
DNN matrix controllers can make them more amenable for use for
a broader class of matrix shapes and sizes.

A. Hardware-Managed Static Scheduling

Accelerator controllers with full processor-based software capabil-
ities are flexible enough to enable any combination of static compute
and memory scheduling decisions. However, performing scheduling
operations using processor-based accelerator controllers comes with
software overheads of computing addresses, strides, pointers, bound-
checking and control flow, which can often be limited by instruction-
issue bandwidth and the throughput of the control processor itself. In
contrast, fixed hardware controllers, such as the one implemented in
Gemmini, perform address calculations, bound-checking, and control
flow, all in parallel to issuing operations, resulting in zero-overhead
scheduling decisions. Zero-overhead hardware control can also better
utilize feedback from the execution pipeline in order to assist in
schedule decisions.

In most cases, such fixed hardware controllers in-fact have suf-
ficient information to perform low-cost hardware-managed static
scheduling decisions based on the shapes and sizes of the operand
matrices. Specifically, we focus on data load scheduling arbitration
within the Gemmini FSM controller. An arbiter, controlled by an arbi-
tration parameter listed as WeightA, regulates a weighted arbitration

3



32x512
512x32

32x32
32x512

512x32
32x32

64x32
32x128

64x256
256x32

64x512
512x32

256x64
64x128

512x128
128x128

512x128
128x256

Operand Matrix Shapes

0

20

40

60

80

Co
m

pu
te

 A
rra

y 
Ut

iliz
at

io
n 

(%
)

76

50

46 45

76

86

65

80

83

76

49

45

41

71

80

63

78

82

65

49

45 44

75

86

63

80
82

63

44 45 45

72

79

64

80
82

61

43
45

41

68

73

64

80
82

60

44 45

41

65

70

64

79

82

HW-Managed Policy
AWEIGHT=1

AWEIGHT=2
AWEIGHT=3

AWEIGHT=4
AWEIGHT=5

Fig. 5: Gemmini (8× 8) utilization using a hardware-managed static
scheduling policy in comparison to different hardware controller
operand matrix arbitration parameter values

scheme for DMA transactions generated by two address generators
for each of the operand matrices in the matrix multiplication: the
A matrix address generator (LdA AGen) and the B matrix address
generator (LdB AGen). For example, if the value of the WeightA
parameter is 3, then for every one DMA transaction dispatched to
the reservation station by the B matrix address generator, there
will be three DMA transactions dispatched to the reservation station
by the A matrix address generator. Figure 4 illustrates a more
detailed schematic of the load address generator listed in Figure 3,
highlighting the WeightA arbiter. While this arbitration parameter
could be hard-coded in the hardware FSM, which would result in
sufficiently high utilization for most large matrices that are double-
buffered, it could also be a programmable parameter that is configured
in software by the programmer for a particular matrix size and shape.
Alternatively, this arbitration decision can also be set by the hardware
controller FSM, based on monitoring the loop iterators generated by
the FSM for a particular matrix shape. This approach, which we refer
to as “hardware-managed static scheduling”, due to the fact that a
hardware-only control loop sets the arbitration decision based on the
software-controlled shape of the matrix, would potentially make the
DNN accelerator more robust to handling a diversity of small and
rectangular-shaped matrices.

We set a relatively simple hardware-managed static scheduling
policy within the Gemmini hardware controller. In this policy, the
arbiter starts by issuing a load command for the first block of the
second operand matrix (B). This is since the systolic array is a
weight-stationary systolic array, in which the second operand matrix
is the “static” (stationary) operand within the array. The controller
policy will then continue to dispatch load commands based on the
values of the k iterators within the address generator for the A matrix
and the address generator of the B matrix.

The loop unroller FSM maintain independent copies of the loop
iterators for the A address generator and B address generator,
allowing each address generator to progress autonomously based
on the independent iterator values issued to them by the FSM. As
such, when the k iterator associated with the B address generator is
greater than the value of the k iterator associated with the A address
generator, this is an indication that the DMA transactions being issued
are related to the inner most loop in the nested loops. Similarly, when

the k iterator of the A address generator is greater than the value of
the k iterator of the B address generator, this is an indication of a
value increment in the middle loop of the nested loops. Therefore,
in this hardware-managed static scheduling policy, the transaction
arbiter will issue DMA transactions from the B address generator
as long as the value of the k iterator associated with the A address
generator is greater than the value of the k iterator of the B address
generator.

Figure 5 presents a comparison of the utilization of the 8×8 Gem-
mini accelerator when using the hardware-managed static scheduling
policy vs. using software programmable values of the WeightA
parameter. Notably, the hardware-managed static scheduling policy
demonstrates equal or better utilization compared to the best software
programmable value in each of the evaluated cases. More importantly,
the hardware-managed adaptive static scheduling policy achieves this
utilization without additional programmer intervention or domain
knowledge about the shape of the operand matrices. The hardware
cost of this adaptive hardware-managed policy is relatively inexpen-
sive, and is primarily reflected in wiring (since the iterator values need
to be wired to the arbiter), and a pair of multiplexers and comparators
used to implement the adaptive policy decision.

B. Dynamic Scheduling in Matrix Engines

In order to improve dynamic scheduling and alleviate variable-
latency head-of-line blocking experienced by small matrix operations
in Gemmini due to its integration with shared resources in the SoC,
we add out-of-order execution support within Gemmini. Out-of-order
execution helps unblock the execution pipeline when processing a
long-latency operation by parallel scheduling of additional indepen-
dent instructions on other available execution units. Execution of the
instructions may be out-of-order, but the instructions commit and
update the architectural state in-order. This type of ILP-extraction
can be very beneficial in superscalar CPUs which have high diversity
of instructions with variable latencies. In contrast, Gemmini has a
very small instruction set, consisting primarily of two types of oper-
ations: fixed-latency execution operations, and variable latency DMA
operations. DMA operations are variable latency due to Gemmini’s
integration with the coherent SoC memory system which includes a
cache hierarchy and coherence protocols.

As such, out-of-order execution within Gemmini does not need to
encompass the entire pipeline and all instruction types, but rather only
those that may experience head-of-line blocking due to a variable-
latency instruction and a data dependency. Specifically, we identify
two operation types which would benefit from out-of-order execution
within the Gemmini controller:

• Compute (matmul) - Reordering of independent or commutative
matrix multiplication and accumulation operations, as a result of
variable-latency operand load latency

• Store (mvout) - Reordering of DMA transactions from the Gem-
mini accumulator to main memory as a result of a reordering of
compute operations.

Most importantly, unlike CPUs, the Gemmini matrix engine would
not benefit from out-of-order execution of memory load commands,
since the Gemmini hardware controller dictates a static schedule.
The static schedule means that there are no dynamic address com-
putations, which means there are no load-after-load dependencies
within the instruction stream. Gemmini’s decoupled access-execute
design further supports this scheme of independent execution orders
of memory and compute operations, allowing us to implement out-
of-order execution only for the execution and store command queues.

4



Fig. 6: Matrix operation blocks depending on a single cache line.

However, the out-of-order implementation exposes challenges at
the intersection of static and dynamic scheduling within the matrix
engines in the context of cache-based SoC memory systems. When
the size of a shared cache line is greater than the dimension of
the spatial array (and hence, the dimension of compute operations),
a static schedule for matrix multiplication should be able to take
advantage of spatial locality within the cache line for at least one
of the two operand matrices. This advantage of spatial locality can
also become a detriment when tail latencies are caused by the shared
memory system.

If we assume the granularity of each controller command is a
block of DIM × DIM elements, while a cache line contains CL
elements, we can see that if an operand matrix is represented in a
row-major layout, a long-latency arrival of data from single cache
line could delay the arrival of approximately CL

DIM
blocks from

that operand matrix. Specifically, if we assume that both operand
matrices are represented in a row-major layout, we observe that a
long-latency arrival of data from a single cache line would delay
the arrival of approximately CL

DIM
blocks from the second operand

matrix (B), depending on data alignment, since they are all resident
in the same cache line (as illustrated in Figure 6). As a result, we
see that a long-latency arrival of a single cache line would delay at
least CL

DIM
× CL

DIM
compute commands, since outer products expect

to re-use the same blocks. These blocked operations would consume
precious slots within the out-of-order execution reservation station,
effectively requiring very large reservation stations in order for out-
of-order execution to be effective in hiding long-latency memory
accesses through dynamic scheduling.

One solution would be to interleave commands which operate
on different cache lines while maintaining the WS dataflow (hence,
maintaining the same loop ordering and static schedule), and utilizing
as much data locality as possible. We observe that we can take
advantage of the commutative nature of accumulation, and the fact
that accumulation in matrix multiplication is always performed across
the shared dimension (the k dimension), which is the external most
loop in our static schedule. We further note that by keeping the
static schedule and load operations in their original order, we are
able to maintain maximal use of data locality. Therefore, if we
take advantage of commutative interleaving across the reduction
dimension only within the execution queue, we can maintain both the
WS dataflow and maximal data re-use, while providing a different
mix of commands within the execution queue issue window. This can
be incorporated into the controller in the form of hardware-controlled
commutative micro-threading of the execution queue.

This idea is similar to an observation suggested by Shomron &
Weiser [19] in the context of SMT processing on systolic arrays, in
which they note that the SMT threads could be part of the same DNN

Legend
Loop iterators

k

Ld 
Iterators

ij

St 
Iterators

ij
Ex

Iterators
(μ-thread 1)

Ex
Iterators
(μ-thread 2)

Ex Arbiterμ-thread 
utilization

k ij k ij

Loop Unroller FSM

Fig. 7: Commutative micro-threads within the Loop Unroller FSM (il-
lustrated in Figure 3). The “µ-thread utilization” is a feedback channel
from the reservation station, and describes the number of instructions
from each micro-thread which are stored within the reservation station
but which have not yet been issued to the Execution Queue (ExQ).

Fig. 8: Gemmini micro-threads fine-grained interleaving. Each thread
processes CL/DIM consecutive commands, with thread assignment
repeating in a periodic pattern.

execution flow, as opposed to independent threads of independent
execution flows. Since our controller manages a single execution
flow of matrix multiplication, it is able to split this execution flow
into multiple hardware-managed micro-threads in an attempt to hide
the latency generated by a sequence of data-dependent commands.
Notably, these are not full-fledged threads, since memory load and
store operations are still performed according to the original static
schedule. Only compute execution commands can be interleaved
using these micro-threads, therefore making them both opportunistic
and inexpensive in terms of additional required state. The con-
troller generates hardware-managed micro-threads by splitting the
nested loops across the most external loop-level (the k reduction
dimension). The controller maintains the loop iterator indices for
each of the micro-threads, and can feed them into the execution
address generator, as illustrated in Figure 7. Slots are allocated in
the execution queue reservation station only for micro-threads for
which the relevant memory load commands have already been issued
and which are within a reservation station utilization bound in order
to prevent a single thread from starving other threads. Equations 1
and 2 demonstrate the independence of the hardware-managed micro-
threads (for the cases of T and 2 threads, respectively) from the
perspective of the execution flow within a single controller-managed
matrix multiplication instruction.

5



1 2 3 4 5 6 7 8 9
Dirty Cache Lines

0

20

40

60

80

Ut
iliz

at
io

n 
(%

)

In-order
Out-of-order

Out-of-order, Threads=2
Out-of-order, Threads=4

Out-of-order, Threads=8
Out-of-order, Threads=16

Fig. 9: Average utilization across different numbers of shared L2 dirty
cache lines for a 32× 1000 times 1000× 32 matrix multiplication,
comparing fine-grained interleaved commutative micro-threads vs.
simple out-of-order and in-order execution in Gemmini (8× 8).

cij =

K∑
k=0

M∑
i=0

N∑
j=0

aikbkj =

T∑
t=0

(t+1)K
T

−1∑
k=tK

T

M∑
i=0

N∑
j=0

aikbkj (1)

=

(K/2)−1∑
k=0

M∑
i=0

N∑
j=0

aikbkj +

K∑
k=K/2

M∑
i=0

N∑
j=0

aikbkj (2)

The controller simply manages multiple individual matrix multipli-
cation execution sub-flows that accumulate into the same accumulator
SRAM. By performing this hardware threading only for the execution
queues rather than the memory queues, the controller does not need
to maintain any additional state other than the indices tracking the
state of the FSM generating addresses for execution commands on
the systolic array. We use a fine-grained micro-thread interleaving
scheme, in which the k dimension is partitioned into (K ·DIM)/CL
partitions, where each partition consists of CL/DIM blocks of
size DIM ×DIM . Each partition is assigned to a different micro-
thread in a periodic pattern, as illustrated in Figure 8. Each thread is
responsible for processing CL/DIM consecutive commands before
switching to the next partition it is assigned to. In this scheme, each
micro-thread is responsible for handling CL/DIM commands, since
we know all of those commands will depend on the same cache line,
and therefore will not benefit from further internal micro-threading.

We evaluate our micro-threading implementation by comparing
the utilization of the series of experiments on a 32 × 1000 by
1000 × 32 matrix multiplication, in order to evaluate its benefit for
small matrices which cannot be double-buffered by the controller.
We use dirty cache lines as a method of inducing variable tail
latencies while maintaining complete system integrity (as opposed to
isolated trace-driven testing of the accelerator). We vary the number
of micro-threads and compare the utilization results to in-order and
non-threaded out-of-order execution in Gemmini, as illustrated in
Figure 9, and we observe that for micro-thread counts greater than
4 we see consistent benefits in accelerator utilization when using the
out-of-order execution together with commutative hardware-managed
micro-threading. Eight micro-threads appear to provide the optimal
increase in utilization, with sixteen threads exhibiting diminishing
returns with respect to the number of threads. Using eight micro-

(16,
16,

2000)

(16,
32,

1000)

(16,
64,

2000)

(32,
32,

1000)

(32,
64,

1000)

(58,
96,
58)

(64,
32,

1000)

(113,
32,

2499)

(117,
189,
117)

(128,
128,

1000)

(189,
117,
118)

(196,
256,

1024)

(401,
401,
32)

(561,
32,

401)

(561,
32,

529)
Matrix Dimensions (M,N,K)

0.975

1.000

1.025

1.050

1.075

1.100

1.125

1.150

1.175

Sp
ee

du
p

Fig. 10: Speedup distributions (box-plot) of an out-of-order 8 × 8
Gemmini controller with 8 commutative micro-threads vs. a baseline
in-order controller across a collection of matrix shapes with different
arithmetic intensities sampled from matrix decomposition workloads.

threads, we observe up to a 15% improvement in utilization compared
to only in-order execution in Gemmini.

We further evaluate this technique on a wider spectrum of matrix
shapes and sizes, derived from the collection of matrix shapes
identified in Figure 1. We repeat the series of experiments using dirty
cache lines as a method of inducing variable tail latencies, this time
expanding our range of dirty cache lines to 1-100. Figure 10 illustrates
the speedup distributions observed for each matrix shape across the
series of experiments using 8 commutative micro-threads, compared
to the baseline in-order configuration. In order to evaluate the cost-
effectiveness of this method, we synthesize both configurations using
Global Foundries 12nm FinFET process technology. We observe that
the total Gemmini area for the baseline in-order configuration is
682,938 (µm)2, while the total area for the configuration with our
improvements is 685,555 (µm)2, demonstrating an area addition of
only 0.38%. We therefore conclude that compared to the net speedup
of these techniques, ranging between 1%-25%, their area cost is very
low, making these an effective choice for matrix engine controllers.

V. CONCLUSION

In this work, we characterized several key differences in the utiliza-
tion of matrix engines for DNN inference vs. the broader numerical
data analysis workloads category. We observed an increased impor-
tance for processing of matrices with a higher variety of shapes and
sizes, including small and rectangular matrices. We demonstrated how
accelerator utilization can be impacted by static scheduling within the
matrix engines controller, as well as system-level effects generating
variable memory-latency behavior observed by the accelerator at
small matrix size regimes. Finally, we propose the implementation
of several micro-architectural techniques in matrix engine controllers
within DNN accelerators to better support both static scheduling and
dynamic scheduling of operations within the accelerator, requiring
only minor modifications to the current Gemmini DNN accelerator
micro-architecture. We demonstrate up to a 1.25× improvement in
utilization of the Gemmini matrix engine on small matrices through
hardware-managed static scheduling, and up to a 1.15× improvement
in utilization on small matrices through dynamic scheduling and
hardware-managed commutative micro-threading.

6



REFERENCES

[1] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew,
A. Magyar, H. Mao, A. Ou, N. Pemberton, P. Rigge, C. Schmidt,
J. Wright, J. Zhao, Y. S. Shao, K. Asanović, and B. Nikolić, “Chipyard:
Integrated design, simulation, and implementation framework for custom
socs,” IEEE Micro, vol. 40, no. 4, pp. 10–21, 2020.

[2] E. Anderson, Z. Bai, J. J. Dongarra, A. Greenbaum, A. McKenney, J. D.
Croz, S. Hammarling, J. Demmel, C. H. Bischof, and D. C. Sorensen,
“LAPACK: a portable linear algebra library for high-performance
computers,” in Proceedings Supercomputing ’90, New York, NY, USA,
November 12-16, 1990, J. L. Martin, D. V. Pryor, and G. Montry,
Eds. IEEE Computer Society, 1990, pp. 2–11. [Online]. Available:
https://doi.org/10.1109/SUPERC.1990.129995

[3] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public
domain dataset for human activity recognition using smartphones,”
in 21st European Symposium on Artificial Neural Networks, ESANN
2013, Bruges, Belgium, April 24-26, 2013, 2013. [Online]. Available:
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2013-84.pdf

[4] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 269–284. [Online]. Available:
https://doi.org/10.1145/2541940.2541967

[5] Y. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,” IEEE
Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 2017.

[6] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,
G. Anderson, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque,
L. Hong, V. Jain, X. Liu, and H. Shah, “Wide & deep learning for
recommender systems,” in Proceedings of the 1st Workshop on Deep
Learning for Recommender Systems, ser. DLRS 2016. New York, NY,
USA: Association for Computing Machinery, 2016, p. 7–10. [Online].
Available: https://doi.org/10.1145/2988450.2988454

[7] A. Dakkak, C. Li, J. Xiong, I. Gelado, and W.-m. Hwu, “Accelerating
reduction and scan using tensor core units,” in Proceedings of the ACM
International Conference on Supercomputing, ser. ICS ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 46–57.
[Online]. Available: https://doi.org/10.1145/3330345.3331057

[8] H. Genc, S. Kim, A. Amid, A. Haj-Ali, V. Iyer, P. Prakash, J. Zhao,
D. Grubb, H. Liew, H. Mao, A. Ou, C. Schmidt, S. Steffl, J. Wright,
I. Stoica, J. Ragan-Kelley, K. Asanović, B. Nikolić, and Y. S. Shao,
“Gemmini: Enabling systematic deep-learning architecture evaluation
via full-stack integration,” in Proceedings of the 58th ACM/EDAC/IEEE
Design Automation Conference, ser. DAC ’21. IEEE Press, 2021.

[9] K. Goto and R. A. v. d. Geijn, “Anatomy of high-performance matrix
multiplication,” ACM Trans. Math. Softw., vol. 34, no. 3, May 2008.
[Online]. Available: https://doi.org/10.1145/1356052.1356053

[10] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, “Harnessing
gpu tensor cores for fast fp16 arithmetic to speed up mixed-precision
iterative refinement solvers,” in SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE,
2018, pp. 603–613.

[11] M. Hashemi, K. Swersky, J. Smith, G. Ayers, H. Litz, J. Chang,
C. Kozyrakis, and P. Ranganathan, “Learning memory access patterns,”
in Proceedings of the 35th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, J. Dy
and A. Krause, Eds., vol. 80. Stockholmsmässan, Stockholm
Sweden: PMLR, 10–15 Jul 2018, pp. 1919–1928. [Online]. Available:
http://proceedings.mlr.press/v80/hashemi18a.html

[12] Q. Huang, M. Kang, G. Dinh, T. Norell, A. Kalaiah, J. Demmel,
J. Wawrzynek, and Y. S. Shao, “Cosa: Scheduling by constrained
optimization for spatial accelerators,” in Proceedings of the 48th Annual
International Symposium on Computer Architecture, ser. ISCA ’21.
New York, NY, USA: Association for Computing Machinery, 2021.

[13] G. Jeong, E. Qin, A. Samajdar, C. J. Hughes, S. Subramoney, H. Kim,
and T. Krishna, “Rasa: Efficient register-aware systolic array matrix
engine for cpu,” in Proceedings of the 58th Annual Design Automation
Conference, DAC 2021. ACM, 2021.

[14] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,

D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of
the 44th Annual International Symposium on Computer Architecture,
ser. ISCA ’17. New York, NY, USA: ACM, 2017, pp. 1–12. [Online].
Available: http://doi.acm.org/10.1145/3079856.3080246

[15] D. Richins, D. Doshi, M. Blackmore, A. Thulaseedharan Nair, N. Patha-
pati, A. Patel, B. Daguman, D. Dobrijalowski, R. Illikkal, K. Long,
D. Zimmerman, and V. Janapa Reddi, “Missing the forest for the
trees: End-to-end ai application performance in edge data centers,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2020, pp. 515–528.

[16] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramab-
hadran, “Low-rank matrix factorization for deep neural network training
with high-dimensional output targets,” in 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, 2013, pp. 6655–
6659.

[17] Y. S. Shao, “Design and modeling of specialized architectures,” Ph.D.
dissertation, Harvard University, 2016.

[18] D. Shin, J. Lee, J. Lee, and H.-J. Yoo, “Dnpu: An 8.1tops/w reconfig-
urable cnn-rnn processor for general-purpose deep neural networks,” in
2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017,
pp. 240–241.

[19] G. Shomron and U. C. Weiser, “Non-blocking simultaneous
multithreading: Embracing the resiliency of deep neural
networks,” in 53rd Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 2020, Athens, Greece, October
17-21, 2020. IEEE, 2020, pp. 256–269. [Online]. Available:
https://doi.org/10.1109/MICRO50266.2020.00032

[20] F. Sijstermans, “The nvidia deep learning accelerator,” in Hot Chips 30:
The Flint Center for the Performing Arts, Cupertino, California, August
19–21, 2018, 2018. [Online]. Available: https://www.hotchips.org/hc30/
2conf/2.08 NVidia DLA Nvidia DLA HotChips 10Aug18.pdf

[21] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[22] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong, “Towards
k-means-friendly spaces: Simultaneous deep learning and clustering,”
in Proceedings of the 34th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, D. Precup
and Y. W. Teh, Eds., vol. 70. International Convention Centre,
Sydney, Australia: PMLR, 06–11 Aug 2017, pp. 3861–3870. [Online].
Available: http://proceedings.mlr.press/v70/yang17b.html

[23] K. Yang, Y.-F. Chen, G. Roumpos, C. Colby, and J. Anderson, “High
performance monte carlo simulation of ising model on tpu clusters,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’19. New
York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3295500.3356149

[24] S. Zhang, E. Baharlouei, and P. Wu, “High accuracy matrix
computations on neural engines: A study of qr factorization and its
applications,” in Proceedings of the 29th International Symposium on
High-Performance Parallel and Distributed Computing, ser. HPDC ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
17–28. [Online]. Available: https://doi.org/10.1145/3369583.3392685

[25] S. Zhang, R. Shah, and P. Wu, “Tensorsvm: Accelerating kernel
machines with tensor engine,” in Proceedings of the 34th ACM
International Conference on Supercomputing, ser. ICS ’20. New York,
NY, USA: Association for Computing Machinery, 2020. [Online].
Available: https://doi.org/10.1145/3392717.3392770

7


