
Preventing Babel: Rectifying the Trend of
Programming Language Divergence

Alon Amid
University of California, Berkeley
alonamid@eecs.berkeley.edu

Borivoje Nikolic
University of California, Berkeley

bora@eecs.berkeley.edu

Abstract
Throughout the history of computers, there has been a prolif-
eration of new programming languages. Programmers have
a variety of language choices for application or system devel-
opment. Many languages have differing constructs, syntax
rules, and development environments, which impede the pro-
ductivity of programmers using a diverse language set. With
the renewed interest in Domain Specific Languages (DSL),
we argue that further emphasis should be put on common
core constructs and syntax during the design and evaluation
of a new language. We believe common base languages will
improve programmers’ productivity, and allow the devel-
opment of a strong supporting ecosystem of programming
systems.

1 Introduction
Programming languages are the programmer’s main tool for
interacting with a computer, hence, they should be a skill
at which programmers are highly proficient. However, the
fast evolution, and increasing variety and diversity of pro-
gramming languages makes it increasingly harder to reach
a high level of proficiency for many programmers. De-facto
standardization and common cores have historically proven
to be successful at supporting highly proficients communi-
ties which drive powerful ecosystems in other parts of the
computing stack (ISA, OS). On the other hand, the diversity
of programming languages allows for domain-specific ap-
plications and systems to be expressed more efficiently and
accurately. We must ask, how can we balance the benefits of
the diverse set of domain oriented programming languages
with the power of strong core ecosystems.

2 Programmers and Languages
In recent years "Google Programming" or "Stack Overflow
programming" has become a dominant form of coding. This
form of "programming" consists of performing a Google
search, or checking for answers in the Stack Overflow web-
site archive in order to write basic program blocks. These
are indeed great tools, which allow for improved knowledge
management and quick debugging by experience sharing.
However, given that programming languages are the basic

PLATEAU’17 Workshop on Evaluation and Usability of Programming Lan-
guages and Tools, October 23, 2017, Vancouver, CA

tool used to express specification-based instructions to a
computer, we argue that a minimum proficiency should be
acquired for efficient use of a programming language.

Programming efficiency is diminished when programmers
stop working in order to search for the correct form of simple
operations such as variable assignments, conditional state-
ments, or loop declarations. As an example, a basic question
such as "how to write an if-else statement in Python" has ap-
proximately 200,000 views on Stack Overflow at the time of
writing [6]. While this is not a precise and accurate measure
of the popularity of this question (since the answer may also
be found in simple tutorials and Google searches), it does pro-
vide a sense to the extent of programmers’ knowledge as to
the basic behavior of a popular programming language. The
lack of thorough knowledge of a programming language’s
basic behavior may lead to simple compilation errors, as well
as more concerning logical bugs. These types of bugs are
prominent when switching between 0-based and 1-based
indexed languages, or languages that differ in calling by ref-
erence/value/name. Furthermore, when programmers are
not highly proficient in a language, they will not be able to
use its unique and powerful traits which are many times the
justification for the diversity of languages.
A principle reason for this lack of high-level proficiency

is due to the difference in the implementation and repre-
sentation of basic constructs between languages. Gaining
proficiency in a programming language requires language
learning and acquisition skills. Unlike other professional
tools or libraries, a language consists of many components
such as syntax, semantics, morphology and vocabulary, just
to name a few. While programming languages are usually
less verbose than human natural languages (especially in
vocabulary), we argue that similar proficiency levels will
lead to more efficient use of programming languages. We
define efficient use as requiring less time to write a given
functionality, and using the least number of instructions to
describe that functionality.
According to [4], about 54% of Europeans speak at least

2 languages, while only 10% speak at least 4 languages. [5]
found that a majority of programmers identify as proficient
in approximately 4-6 programming languages, and require
between 1 month to 1 year to learn each language. An un-
dergraduate student in a computer science or electrical en-
gineering program will likely use at least 5 programming



PLATEAU’17, October 23, 2017, Vancouver, CA Alon Amid and Borivoje Nikolic

languages during their studies, according to course curricu-
lum [11]. Since learning a programming language requires
many of the same skills as acquiring a natural language, we
must wonder why do we allow and require ourselves to learn
so many more programming languages.

3 Domain Specific Languages
Domain Specific Languages (DSLs) have existed for many
years as independent environments. Some examples include
SQL for relational databases and Verilog/VHDL for hardware
description. These languages have proven to develop unique
ecosystems around them, but were bound to large enough
industries which could support these types of independent
silo environments. Knowledge of these languages was part
of a relevant professional’s toolkit and basic training, such
as data analysis or hardware engineering.
DSLs have experienced a resurgence in popularity in re-

cent years, in order to provide better abstractions for pro-
grammers to use in specific contexts. Some examples include
P4 [2] in the networking community, Halide [7] for image
processing, and Chisel for hardware description [1]. We pre-
dict this trend will further expand with the evolution of
Domain Specific Accelerators in the hardware community,
which further motivate unique programming abstractions.

While we agree that there exists a need for these languages,
and they indeed provide powerful abstractions for their re-
spective purposes, we also maintain that in many cases these
abstractions do not require re-inventing the wheel and gener-
ating complete new languages. We believe that new abstrac-
tions can evolve to extend existing core languages, just as
natural languages evolve gradually with the introduction of
new concepts (through vocabularies, semantics, and contrac-
tions). Examples of DSLs extending core languages include
Halide which is embedded in C++, and Chisel which is em-
bedded in Scala (the definition of Scala as a core language
can be argued). On the other hand, other DSLs such a P4
provide their own base language due to the argument that
they may target different hardware platforms.

4 Discussion and Proposals
The language divergence problem is highly visible in dy-
namic and scripting languages. Languages such as Python,
R, Matlab and Perl are used interchangeably for similar pur-
poses of data analysis and manipulation. They are all high
level, dynamic, interpreted languages which have a simi-
lar core functionality and significant reliance on their li-
brary and module communities. These languages are many
times associated with user communities due to historical rea-
sons rather than domain-specific characteristics. Arguably,
much of the domain-specific functionality of these languages
is derived from their library communities [5]. While these
languages may be used interchangeability for many pur-
poses, they have different syntax, constructs, and supporting

ecosystems. As an example, when a Matlab-trained engi-
neer works jointly with Python-trained scientists, one of
them must learn a new syntax, new type constructs, new
module libraries, and invest significant debugging time in or-
der to perform simple actions that both scripting languages
perform equivalently. This type of knowledge transfer and
vocabulary translation is especially damaging, as it is not
domain-related, and it adds another level of burden to the
task of domain-specific knowledge transfer.
We are not the first to question the reasons behind the

large number of programming languages [9], nor are we
the first to speculate regarding the impact of the historical
evolution rather than design [8]. However, we argue that
further actions should be taken in order to prevent further
exponential growth of this phenomenon due to the addition
of the specialization dimension. While history has showed
that programming languages which do not meet mainstream
conventions end up disappearing overtime through the laws
of "natural selection" and "free market economy", this pro-
cess costs many resources and a long time. With the rise in
popularity of DSLs, the programming community is coming
to an important junction: allowing the historical evolution
to continue encouraging even further divergence, or setting
compatibility as a priority for DSLs. We propose using syn-
tax and basic semantics as a tool to unify basic language
constructs. Compatibility and syntax standardization should
take a stronger role when designing and reviewing new
languages, as important as the role of the programming par-
adigm and abstraction. Previous studies [10] examined the
effects of syntax on novice and experienced programmers.
While the analysis focused on novice programmers, the re-
sults show that programmers with previous programming ex-
perience have a different understanding of "intuitive syntax"
compared to novice programmers. This is further supported
by natural language learning research, which distinguishes
between primary language acquisition and secondary lan-
guage acquisition [3]. Since in most cases DSLs are not the
first programming language learned by developers, design
considerations for DSLs should be different than those of a
general purpose language, and support the case for common
syntax and semantics cores based on historically popular
general purpose languages. DSLs should be designed as ex-
tensions of existing core languages (sometimes referred to
as "Internal/embedded" DSLs), rather than new languages
with their own syntax and semantics. While it is not possible
to control which languages gain popularity, guidelines and
methodologies for the development of new languages may
assist in eventual convergence. We hope that common prim-
itives and syntax families will consolidate into general cores
that can be supported by common tools and infrastructure
for a variety of extended languages.

As an example, the core structure of the C language syntax
has proven useful for many compiled languages due to its
expressive native primitives. Hence, DSLs with performance



Preventing Babel PLATEAU’17, October 23, 2017, Vancouver, CA

oriented goals should extend and maintain compatibility
with a C-family language. Analogously, usability or produc-
tivity oriented DSLs, DSLs that utilize meta-programming, or
DSLs which do not generate machine-target code, could use
Python as a common core, since it has emerged as the lan-
guage of choice for general purpose scripting. Usability and
performance generate trade-offs that can be proved to con-
flict with each other, and therefore justify different core fami-
lies. Divergence should be justified only by formally proving
inherent conflicts with a core language.While the constraints
of extending existing programming languages add challenges
compared to designing a language from scratch, these chal-
lenges should be embraced rather than imposed later on to
the users.

5 Conclusion
The title of this paper is derived from the biblical tale of the
tower of babel, in which the different languages diverged and
prevented humanity from reaching the next great achieve-
ment. While DSL popularity is increasing, we argue for
further emphasis on language compatibility, and preven-
tion of language divergence using common base syntax and
constructs. Language extension and compatibility assists
in avoiding the long process of "natural selection" of pro-
gramming languages. These arguments build upon historical
precedence of de-facto standards, and analogies between
programming languages and natural languages. DSLs are
a powerful tool, but they should be structured to support
common language cores to drive the development of strong
ecosystems. These language cores will benefit both program-
mers and programming-system designers who will be able
to build upon powerful ecosystems with highly proficient
users.

6 Acknowledgment
The authors are partially supported by DARPA Award Num-
ber HR0011-12-2-0016 and ASPIRE Lab industrial sponsors
and affiliates Intel, Google, HPE, Huawei, LGE, Nokia, NVIDIA,
Oracle, and Samsung. Any opinions, findings, conclusions,
or recommendations in this paper are solely those of the au-
thors and do not necessarily reflect the position or the policy
of the sponsors. The authors would like to thank Jonathan
Reagen-Kelly for the informative and thoughtful discussions
regarding the topics mentioned in the paper.

References
[1] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew

Waterman, Rimas Avižienis, John Wawrzynek, and Krste Asanović.
2012. Chisel: constructing hardware in a scala embedded language. In
Proceedings of the 49th Annual Design Automation Conference. ACM,
1216–1225.

[2] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. 2014. P4: Programming protocol-independent packet

processors. ACM SIGCOMM Computer Communication Review 44, 3
(2014), 87–95.

[3] Catherine J Doughty and Michael H Long. 2008. The handbook of
second language acquisition. Vol. 27. John Wiley & Sons.

[4] Special Eurobarometer. 2012. Europeans and their Languages. Euro-
pean Commission (2012).

[5] Leo A Meyerovich and Ariel S Rabkin. 2013. Empirical analysis of
programming language adoption. ACM SIGPLAN Notices 48, 10 (2013),
1–18.

[6] Stack Overflow. 2010. What is the correct syntax for ’else
if’? (2010). https://stackoverflow.com/questions/2395160/
what-is-the-correct-syntax-for-else-if

[7] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, FrédoDurand, and SamanAmarasinghe. 2013. Halide: a language
and compiler for optimizing parallelism, locality, and recomputation
in image processing pipelines. ACM SIGPLAN Notices 48, 6 (2013),
519–530.

[8] Matt Sherman. 2015. Why are there so many program-
ming languages? (2015). https://stackoverflow.blog/2015/07/29/
why-are-there-so-many-programming-languages/

[9] Andreas Stefik and Stefan Hanenberg. 2014. The programming lan-
guage wars: Questions and responsibilities for the programming lan-
guage community. In Proceedings of the 2014 ACM International Sym-
posium on New Ideas, New Paradigms, and Reflections on Programming
& Software. ACM, 283–299.

[10] Andreas Stefik and Susanna Siebert. 2013. An empirical investigation
into programming language syntax. ACM Transactions on Computing
Education (TOCE) 13, 4 (2013), 19.

[11] EECSDepartment University of California, Berkeley. 2017. EECSMajor
Requirements. (2017). https://eecs.berkeley.edu/resources/undergrads/
eecs/degree-reqs

https://stackoverflow.com/questions/2395160/what-is-the-correct-syntax-for-else-if
https://stackoverflow.com/questions/2395160/what-is-the-correct-syntax-for-else-if
https://stackoverflow.blog/2015/07/29/why-are-there-so-many-programming-languages/
https://stackoverflow.blog/2015/07/29/why-are-there-so-many-programming-languages/
https://eecs.berkeley.edu/resources/undergrads/eecs/degree-reqs
https://eecs.berkeley.edu/resources/undergrads/eecs/degree-reqs

	Abstract
	1 Introduction
	2 Programmers and Languages
	3 Domain Specific Languages
	4 Discussion and Proposals
	5 Conclusion
	6 Acknowledgment
	References

