
Co-design of deep neural
nets and neural net
accelerators for embedded
vision applications
Deep Learning is arguably the most rapidly evolving research area in
recent years. As a result, it is not surprising that the design of
state-of-the-art deep neural net models often proceeds without much
consideration of the latest hardware targets, and the design of neural
net accelerators proceeds without much consideration of the
characteristics of the latest deep neural net models. Nevertheless, in
this article, we show that there are significant improvements available
if deep neural net models and neural net accelerators are co-designed.
In particular, we show that a co-designed neural net model can yield
an improvement of 2.6/8.3� in inference speed and 2.25/7.5� in
energy as compared to SqueezeNet/AlexNet, while improving the
accuracy of the model. We also demonstrate that a careful tuning of the
neural net accelerator architecture to a deep neural net model can
lead to a 1.9–6.3� improvement in inference speed.

A. Amid
K. Kwon

A. Gholami
B. Wu

K. Asanovi�c
K. Keutzer

Introduction
For the past several decades, software application design

and hardware design have been mostly abstracted from each

other through general-purpose processors and

programmable computing. Nevertheless, with the decline of

Moore’s law, systems-on-chip (SoCs) and specialized

accelerators are requiring tighter integration between

applications and hardware. With the evolving accuracy of

deep neural nets (DNN), there is an increasing number of

applications utilizing them for a variety of purposes. In

particular, DNNs provide the preferred solution for most

problems in computer vision. However, while the

architectural design and implementation of accelerators for

neural nets (NNs) and the design of novel DNN models are

very popular topics, a review of literature in these areas

indicates that few efforts have broken down the barriers to

achieve real co-design.

In particular, hardware architectures and their circuit

implementations are routinely evaluated on old or large

DNNmodels, whose fat (in model parameters) and shallow

(in layers) architectures bear little resemblance to typical

DNNmodels for computer vision application. Compounding

these deficiencies, these DNN-model/NN-accelerator pairs

are evaluated on very modest-sized datasets such as MNIST

[1] or CIFAR [2]. Furthermore, DNN accelerator designs do

not always differentiate between training and inference in

the cloud and inference at the edge, even though they impose

very different constraints in terms of power and speed.

Important application-related factors such as batch size (i.e.,

the number of data elements that are simultaneously

processed) are routinely omitted from the analysis of such

accelerators. Alternatively, when they are stated, batch-size

values are given, which do not correspond well to any natural

application domain. As a result, the utility of many of these

NN accelerators on real application workloads is largely

unproven.

At the same time, the design of DNN models principally

focuses on accuracy on target benchmarks, with little

consideration of speed and even less of energy. Moreover,

the implications of DNN design choices on hardware

execution are not always understood. Unfortunately, even

those computer vision papers that do consider the speed of

DNN computations often simply use a static calculation of

the number of computations performed by a DNN [e.g.,

Multiply-and-Accumulations (MACs)] as a proxy forDigital Object Identifier: 10.1147/JRD.2019.2942284

� Copyright 2019 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed

royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

0018-8646/19 � 2019 IBM

IBM J. RES. & DEV. VOL. 63 NO. 6 PAPER 6 NOVEMBER/DECEMBER 2019 A. AMID ET AL. 6 : 1

speed. However, as this article and other works [3, 4] show,

this proxy is clearly not enough when designing DNNs or

NN accelerators.

Thus, a significant gap exists between state-of-the-art NN

accelerator design and state-of-the-art DNN model design.

In this article, we simply present the results of a coarse-

grain co-design approach for closing the gap and

demonstrate that a careful tuning of the accelerator

architecture to a DNN model can lead to a 1.9–6.3�
improvement in speed in running that model. We also show

that integrating hardware considerations into the design of a

neural net model can yield an improvement in accuracy, as

well as improvements of 2.6� in speed and 2.25� in

energy as compared to SqueezeNet [5], and, for purposes of

comparison, improvements of 8.3� and 7.5� compared to

AlexNet [6].

Embedded computer vision applications and
their constraints
Typical computer vision applications running on embedded

processors at the edge include surveillance, cell phone

application with computer vision elements, and perception

in autonomous driving.

Despite the variety of computer vision applications, there

are a few basic primitives or kernels out of which these

applications are built. For perception tasks where the goal is

to detect and understand the environment, the most

common tasks include image classification, object

detection, and semantic segmentation, as shown in Figure

1. Looking at this figure from left to right: image

classification (a) implicitly presumes there is a principal

object in the image and aims at assigning one label from a

fixed set of categories. A typical DNN model takes an

image as input and computes a fixed-length vector as

output. Each element of the output vector encodes a

probability score of a certain category reflecting the

likelihood of the presence of that category somewhere in

the image. Object detection (b) places bounding boxes

around objects in an image that belong to a list of pre-

defined classes. Finally, in semantic segmentation, (c) each

pixel in the image is classified.

The precise implementation constraints for an embedded

computer vision application can vary widely, even for a

single application area, such as surveillance or autonomous

driving. To narrow our scope further, in this article, we are

particularly concerned with the design problems for

computer vision applications that run on in a limited form-

factor, on battery power, and with no special support (such

as fans) for heat dissipation but, nevertheless, have real-

time latency constraints.

Altogether, coupling application constraints with

constraints on form-factor, packaging, and battery life results

in a number of recurrent constraints in embedded vision

applications: accuracy, speed, power, energy, and cost.

Accuracy: It is obvious that for a surveillance system or

the perceptual system of an autonomous vehicle to be

useful, it must achieve a certain accuracy. As there is no a

priori definition of accuracy, accuracy in computer vision is

inevitably linked to testing relative on a benchmark. The

most widely used benchmarks are ImageNet [7] for image

classification, COCO [8] for object detection, and

CityScape [9] for semantic segmentation. There are a

number of open-source benchmarks that are more tailored

for particular applications, such as the KITTI [10]

benchmark for object detection and semantic segmentation

in autonomous driving. To be relevant, the population of the

variety of objects of the images in the dataset together with

their image resolution and general quality must be matched

with the target application. A full consideration of this topic

is beyond the scope of this article.

Speed: Even a car traveling only 30 miles per hour

travels 44 ft in 1 second. To navigate accurately in traffic,

the environment surrounding a car must be kept up to date.

It is easy to see how this, in turn, translates into speed

requirements on the processing of images from a video

stream that originates from each camera in an autonomous

vehicle and elucidates why accuracy on processing a still

image is useless if it does not keep up with the stream of

images. This translates into hard constraints, such as

keeping up with a camera speed of 30 frames/s (i.e., one

frame about every 33 ms). While other embedded

applications, like cell phone apps, may appear to have much

softer speed constraints, for a product developer of a cell

phone app, the impatience of an adolescent translates into

just as hard a constraint on application development as the

relative speed of a car.

Power: As we will consider energy separately, the

principal driver of power constraints is the requirement that

the electronics running the embedded vision application do

not require a fan or other active cooling device. This puts a

hard limit on a typical embedded computer vision system of

5–10 W or less.

Energy: In any embedded vision system that runs on

battery power, even an electric vehicle, the energy for

computer vision applications will contend with other

functions for battery life and must not degrade the user

experience.

Figure 1

Illustration of three fundamental computer vision tasks. (a) Image

classification. (b) Object detection. (c) Semantic segmentation.

6 : 2 A. AMID ET AL. IBM J. RES. & DEV. VOL. 63 NO. 6 PAPER 6 NOVEMBER/DECEMBER 2019

Cost: The cost of an integrated circuit is directly related

to the die size. Limits on cost get most directly translated

into limits on the number of accelerator units and amount of

on-chip SRAM.

In addition to the common constraints described above,

embedded applications pose a number of particular

constraints. Many of these motivate the use of embedded

vision solutions rather than cloud-hosted solutions. These

include the following.

Always-on reliability: Functioning at all times without

links to the cloud.

Privacy: The ability to process data locally without

connecting to the cloud.

Limits to application size: In September 2017, Apple

iOS11 imposed a hard limit of 150 MB on the size of

downloads over a cellular network from its App Store. As a

result, most applications try to keep their application size

within this limit. As this is for the entire application,

individual computer vision capabilities within an

application must be much smaller. This, in turn, puts hard

limits on the size of any DNN in the application.

Taken altogether, the set of constraints described in this

section makes the running of an embedded vision

application on an embedded processor or accelerator a

familiar system design problem: The embedded vision

system must achieve hard constraints on accuracy, speed,

and power, and try to optimize total energy consumed and

memory footprint. In the remainder of this article, we will

consider best practices in the co-design of DNNs and NN

accelerators to achieve these constraints.

Meeting the constraints in DNN models
Most of those DNN model designers that are concerned

about efficiency at all seek simple hardware-agnostic

measures to estimate the speed, energy, and power of the

DNN model. In this section, we will describe several of

these popular metrics.

MACs and FLOPs: Given that DNNs are known to be

computationally intensive, a primary goal for optimizing the

DNN structure at the model level is to reduce the

computational complexity while maintaining a satisfactory

accuracy.Without considering specific NN accelerators, the

design of efficient DNN usually aims to reduce the

computation, which is measured by the number of FLoating-

point OPerations (FLOPs) orMACs. The implicit assumption

is that there is amonotonic relationship between the number of

computational operations (MACs or FLOPS) to overall speed,

energy, and power values that constrain embedded

applications.

Number of model parameters: The size of a DNN

model is routinely given by the number of model

parameters or weights that describe the model. These model

parameters need to be stored in memory, and therefore

affect the size and power consumed by the memory.

Limitations in evaluation of efficient DNN models
We will now describe some limitations of the previously

mentioned hardware-agnostic proxies.

MACs and FLOPs
Recall that the use of MACs as a proxy or estimate for the

complexity of a DNN model is common practice in

computer vision research. Nevertheless, it assumes some

ideal model of a computer, which is not the case in practice,

as the ratio of arithmetic unit latency to memory access

latency is highly skewed.

Modern processors employ various techniques such as

parallelism-exploitation, memory hierarchies, and

prefetching in an attempt to mitigate this issue. These

techniques are implemented differently on different

processor microarchitectures, and therefore exploiting the

maximum available arithmetic capacity of a processor

requires thorough understanding of these factors.

The theoretical peak computing power of a processor is

computed based on the capabilities of its arithmetic units.

However, the use of MACs or FLOPS as a performance

measure assumes that the DNN inference speed depends

only on the peak computing power of the hardware, which

implicitly assumes that all computing units are active.

Depending on the type and configuration of the DNN layer

and the hardware architecture, the same theoretical FLOPs

measurement can result in different execution times. The

work in [11] measured the actual execution time of various

convolution filters widely used in convolutional neural

network (CNN) DNNs in CPU/GPU and showed a

significant difference between the theoretical computational

complexity and the actual execution time.

Some of the hardware factors that cause the difference in

the actual execution time include the bandwidth limit of

each level on the memory hierarchy and the utilization rate

of the computing units. Other factors related to this

nonideality that can be impacted by the neural network

model include the degree of the parallelism and data

reusability of the DNN layer.

These effects are further exacerbated with the

introduction of modern dynamic DNN models. Some

modern network models [12] employ layers that require

dynamic control flows—i.e., execution of a layer depending

on the outcome of other components of the network (for

instance residual connections). These network properties

will significantly affect overall run-time since control flow

impacts the amount of parallelism that can be extracted

from the network. In GPUs, this type of control divergence

may double the run-time of a kernel. Control divergence

has also been a longtime challenge in CPU

microarchitecture, where branch prediction and speculative

execution are well-researched areas.

Inaccurate run-time estimation is likely to indicate

inaccurate energy consumption estimation as well.

IBM J. RES. & DEV. VOL. 63 NO. 6 PAPER 6 NOVEMBER/DECEMBER 2019 A. AMID ET AL. 6 : 3

According to [13], much of the energy consumption in

DNN inference is a result of data movement. Therefore,

energy consumption is related to the amount of data and the

manner in which it is used in processing the DNN, rather

than only the pure computation (MACs or FLOPs).

Furthermore, most hardware uses the aforementioned

hierarchical memory structure in which energy

consumption tends to be higher in interactions with the

outer level (DRAM) and low in interactions with the inner

level (register file). Thus, the proportion of the outer

memory accesses is another important factor in evaluating

energy consumption of neural network models.

It is therefore clear that a simple estimation of MACs or

FLOPS cannot serve as an accurate proxy to energy or

speed constraints. We corroborate this conclusion during

the evaluation of SqueezeNext, in which we found multiple

cases where a larger number of MACs resulted in reduced

run-time and energy consumption, as seen in [14, Table 3].

Model parameters
Some additional pitfalls are related to the estimation of the

model’s memory footprint. Many DNN research

publications put emphasis on the number of model

parameters, while leaving out the importance of activation

size on hardware performance. A notable example is

DenseNet-type connections [15], which have been shown to

reduce model parameters, but result in larger feature map

size at the end of each Dense block, which can become a

performance bottleneck. Another example is SqueezeNet-

v1.1 which has the same number of parameters as

SqueezeNet-v1.0 [5], but its pooling layers’ position is

placed earlier in the network to reduce the activation size.

This simple change resulted in significant gains in speed

and energy consumption [14].

Arithmetic intensity
Arithmetic intensity offers a more sophisticated proxy for

estimating the speed and energy of DNN models because it

integrates computation and memory access in a single

model. Arithmetic intensity is generally described as the

ratio between computation and memory traffic, and it is

measured by the number of operations that are performed

for each byte fetched from memory [OPs/Byte]. This is a

very useful metric since it was designed to be independent

from the hardware microarchitecture and depends only on

the implementation of an algorithm or program. Intelligent

DNN design entails balancing memory accesses and

computation and modeling them by means of the roofline

model [16]; however, we should not stop at estimating the

arithmetic intensity of the model as a whole. Instead, as we

see in Table 1, each of the various layer types typically

used in DNN models has different values for arithmetic

intensity.

Nevertheless, even arithmetic intensity has its limitations

with respect to accurate estimation of speed and power. One

can estimate the arithmetic intensity of a DNNmodel as the

ratio of FLOPs to activation and parameter footprint.

However, for the case of finite-size register file, the actual

arithmetic intensity that determines the performance will

depend on memory hierarchy, which includes the sizes and

bandwidths of various levels of local memory. This requires

analysis using non-hardware-agnostic operational intensity,

which considers the total memory traffic. Another proposed

method to analyze the performance for these cases is

Execution-Cache-Memory [17].

Beyond hardware-agnostic evaluation
When designing for efficient embedded application, a DNN

designer must understand all factors that can impact the

overall performance, area, and energy efficiency. These

may include the following.

1) Hardware: the number of computation units, inter-

processor connectivity pattern, data type, memory

hierarchy (e.g., size, bandwidth, latency, data

reuse).

Table 1 Various computer vision DNN building blocks and their computational characteristics.

M denotes the number of input channels, N denotes the number of output filters,Dk denotes the kernel size, DF denotes the input and output
tensor’s spatial dimension. �Mi denotes the input channel size from the ith layer.

6 : 4 A. AMID ET AL. IBM J. RES. & DEV. VOL. 63 NO. 6 PAPER 6 NOVEMBER/DECEMBER 2019

2) DNN: memory footprint, the number of operations,

parallelism, data reusability.

3) Software: machine learning framework, scheduling,

layer tiling, layer fusion

Therefore, we must also consider non-hardware-agnostic

evaluation of a DNN along with a target microarchitecture.

This can be done using a variety of tools: evaluation on

actual processors, architectural simulators,

microarchitectural simulators, etc.

Meeting design constraints with NN
accelerators
The power, energy, and speed constraints for embedded

vision applications discussed in previous sections naturally

motivate the most efficient computing platforms to realize

those constraints. There are indeed standard processors

available today that are able to operate within these

embedded constraints. However, our experience as DNN

designers indicates that it is easier to achieve higher

accuracy with deeper DNN models that use more

computing power, i.e., use more MACs. Moreover, with a

higher MACs/Watt ratio, it is easier to fit that computation

within a fixed thermal design point. These considerations

naturally motivate the investigation into neural net

accelerators that are faster and more power-efficient than

CPUs or GPUs. It has been shown that the energy overhead

resulting from the programmable nature of processors can

be on the order of 100� [18] relative to specialized

hardware executing the same function. This is a result of the

energy cost of instruction fetching from on-chip and off-

chip memory, register file accesses, and control path logic.

This programmable overhead is also reflected in run-time

performance, as program run-time is constrained by the

number of instructions per program and the number of

instructions processed per cycle. Other factors that are

enabled by specialization, such as precision reduction and

dataflow pipelines, provide additional energy and

performance improvements. As a result, specialization in

the form of dedicated accelerators has been found to be a

useful tool in mitigating these previously mentioned

overheads and improving energy efficiency.

Specifically, in the domain of deep neural networks,

specialized hardware accelerators have been demonstrated

by a number of researchers to provide various degrees of

energy efficiency improvements. It is difficult to perform an

exact comparison between different accelerators and

processors due to the large number of variables.

Nevertheless, the TPU [19] presented 30� energy

efficiency improvement compared to the Nvidia K80 GPU,

and an 80� energy efficiency improvement compared to

an Intel Haswell CPU. Furthermore, using the power and

energy efficiency measurements presented in other research

prototypes [13, 20–22], and comparing them to recent top

energy efficiency CPU rankings (November 2017 Green

500 list [23, 24] at 17 GFLOPs/W, and the Q1 2018

SPECpower_ssj2008 [25] CPU results at 12.8 ssj_ops/W),

we can estimate energy efficiency improvements on the

order of 1000� compared to state-of-the-art CPUs.

The typical approach to microarchitectural design of

accelerators is to find a representative workload, extract

characteristics, and tailor the microarchitecture to that

workload [26]. An alternative approach proposed in an

evolving series of research papers [27–29] is to first define

the key structural and computational patterns of the

application, and then use those to drive the architectural and

microarchitectural design. Inference in DNNs has a simple

feed-forward pipe-and-filter pattern in which each filter

subscribes to the linear-algebra pattern. Of course,

conventional CPU architectures can support this pattern, but

if we want to improve speed with an accelerator, a natural

approach is to unroll the computation spatially as much as

we can within the limits of our hardware/silicon allocation.

Unrolling the computation in two dimensions quickly

results in envisioning a systolic [30] microarchitecture for a

NN accelerator. So, next, to define details of the dataflow in

the systolic architecture, we need to consider the

alternatives. As can easily be seen in [31], systolic

architectures or, more recently, spatial architectures (e.g.,

[13]) are a class of accelerator architectures that exploit the

high computational parallelism using direct communication

between an array of relatively simple processing elements

(PEs). Compared to SIMD architectures, spatial

architectures have relatively low on-chip memory

bandwidth per PE, but they have good scalability in terms

of routing resources and memory bandwidth. Convolutions

constitute 90% or more of the computation in DNNs for

embedded vision, which are therefore called CNN. Thanks

to the high degree of parallelism and data reusability of the

convolution, these systolic or spatial architectures are a

natural option for accelerating these CNN/DNNs [13, 19,

22, 32, 33]. Hereafter, we restrict the type of NN

accelerators we consider to these systolic/spatial

architectures and follow the current convention of referring

to them as spatial architectures.

Spatial NN accelerators can be generally characterized by

the data format and precision of their PE (log, linear,

floating point, etc.), the structure of the spatial PE array

(size, interconnect topology, data-reuse, etc.), the memory

and buffer hierarchy (SRAM, eDRAM, unified [13] versus

dedicated [19] configurations, etc.), and additional custom

features such as compression and sparsity exploitation [34,

35]. Each of these characteristics has an impact on the

previously mentioned application constraints for NN

accelerators.

In order to exploit the massive parallelism, NN

accelerators contain a large number of PEs that run in

parallel, each of which typically consists of a MAC unit and

IBM J. RES. & DEV. VOL. 63 NO. 6 PAPER 6 NOVEMBER/DECEMBER 2019 A. AMID ET AL. 6 : 5

a small buffer or register file for local data storage. Many

accelerators employ a two-dimensional (2-D) array of PEs,

ranging in size from as small as 8� 8 [32] to as large as

256� 256 [19]. However, there is a direct relationship

between the number of PEs in a spatial array and the required

memory bandwidth of the accelerator. Thus, NN

accelerators provide several levels of memory hierarchy to

provide data to theMAC unit of a PE, and each level is

designed to take advantage of the data reuse of a

convolutional layer to minimize access to the upper level.

This hierarchy includes global buffers (on-chip SRAMs)

ranging from tens of kilobytes to tens of megabytes,

interconnections between PEs, and local register files in each

PE. The memory hierarchy and the data reuse scheme are

one of the most important features that distinguish NN

accelerators. It is worth noting that some accelerators also

have dedicated blocks to process NN layers other than

convolutional layers [22, 32, 33]. However, since these

layers have a very small computational complexity, they can

usually be processed in a one-dimensional SIMDmanner.

Limitations in modeling and evaluation of NN
accelerators
We have previously mentioned that common design

considerations of DNN models, such as MACs or model

parameters, are not always correlated to actual application

requirements such as inference run time or energy

consumption. However, hardware NN accelerator design is

also limited in the scope of its application level

considerations, and the metrics for the evaluation of NN

hardware accelerators are many times equally inconsistent.

Evaluation measures
The OPS/Watt metric has emerged as the figure-of-merit of

choice in the NN accelerator implementation community.

As an example, the 2017–2019 sessions of the International

Conference on Solid State Circuits presented NN

accelerators ranging from 2.1 to 140.3 TOPS/Watt [20–22,

36–41] while highlighting reduced precisions of only 1–16

bits and sparsity exploitation in pursuit of energy efficiency.

Similarly, the 2017 and 2018 Symposia on VLSI Circuits

published energy efficiency figures ranging from 2.3 to

765.6 TOPS/Watt [42–48], using a variety of reduced-

precision techniques.

The OPS/Watt metric is a corollary to the popular

FLOPS/Watt metric used for the evaluation of computer

performance and energy efficiency. However, while FLOPS

is a relatively well-defined metric with regards to the

specification of the operations (single precision or double

precision floating point operations), the “OP” used in neural

net accelerator evaluation is not as well defined, a

phenomenon clearly visible in the wide range of published

results. While evaluations on the OPS/Watt figure-of-merit

show orders of magnitude of improvement year after year,

many of these DNN accelerators use popular reduced

precision and pruning techniques which affect the accuracy

and run-time of DNN models. In this context, presenting

OPS/Watt figures without associated accuracy, latency, and

supporting memory-system details renders these

comparisons as highly controversial.

Furthermore, if an accuracy sensitivity analysis is

performed in the accelerator implementation community, it

is highly different than an accuracy sensitivity analysis

performed in the ML community. This is because the

reference design and DNN architecture of choice for

evaluation in a large portion of hardware accelerators works

[21, 22, 36, 40, 45, 47] is AlexNet [6], a network

architecture that is considered by many as “past its prime.”

Alternatively, accelerators are evaluated on unspecified

demonstration versions of CNN/RNN [19, 49], other large

network architectures such as VGG [50], or using simple

datasets such as MNIST or CIFAR-10 [37, 40, 43, 44].

While AlexNet was indeed a significant breakthrough in the

ability of DNNs to obtain good accuracy on the ImageNet

dataset, the computer vision community has since advanced

to more sophisticated network architectures. Some popular

modern DNN features such as residual layers or small

convolutions inherently break dataflow and parallelism

assumptions between layers, which may impact inter-layer

data reuse utilized in many NN accelerators. While it is

natural for hardware accelerator implementations to “lag”

behind fast-paced ML advancements, evaluation on 6-year-

old network architectures lacks the necessary information

and tools to guide ML researchers.

Application context for batching
Spatial NN accelerators are designed to exploit parallelism

using parallel PEs. As such, the availability of input-

parallelism is important for the utilization of throughput-

oriented processors and spatial NN accelerators.

Exploitation of data parallelism in DNN training is

effectively achieved by batching several training elements

into single optimizer steps (commonly Stochastic Gradient

Descent) for updating weight values. This type of input-data

parallelism can also be exploited in certain inference

scenarios with a high volume of input data (such as in data-

centers, or video and signal processing on edge devices).

However, in other inference scenarios on edge devices,

there is not necessarily a large enough set of data to be

processed in “batches.” In an example scenario of an

Internet of Things (IoT) device capturing an image once

every several minutes to hours [51] and using a DNN to

detect and identify objects, batching several images for

inference can be irrelevant. Latency-sensitive applications

are also limited in the amount of batching that can be used

for inference. These types of inference engines can exploit

only layer-level parallelism in the DNN model. Batching

effectiveness can also be limited by device memory

6 : 6 A. AMID ET AL. IBM J. RES. & DEV. VOL. 63 NO. 6 PAPER 6 NOVEMBER/DECEMBER 2019

capacity and energy constraints. In models that do not fit in

on-chip memory, batching may indeed amortize the cost of

data transfer between on-chip and off-chip memory.

However, in cases where an entire neural net model fits in

on-chip memory, it may be beneficial to reduce batch sizes,

hence not requiring the eviction of model weights to off-

chip memory. Recent calls by prominent machine learning

researchers have also emphasized the need for smaller batch

sizes in hardware DNN processing [52].

Feature map versus model sizes impact on memory
design
When discussing memory utilization, we must also consider

the differences in input sizes between different applications.

While images in the ImageNet data set vary in size and

resolution [7], a common preprocessing stage is to sample

the image to 256� 256 pixels, resulting in an image size of

�196 KB. However, while the ImageNet benchmark was

designed for image classification, newer DNN application

domains such as autonomous driving require processing of

higher-resolution images for detection and classification of

smaller objects. These applications have different memory

design considerations than current models, which are

dominated by model parameter sizes. Many NN

accelerators are designed to be able to fit specific models

within on-chip memory. Some DNN models are good fits

for these types of accelerators, such as when using

SqueezeNet on the ImageNet dataset (385 KB for the larger

layer). Nevertheless, when using high-resolution images (10

mega-pixels), memory utilization is dominated by feature

maps (4 MB), and therefore the small number of model

parameters of the SqueezeNet model is irrelevant. In such

cases, given an unfit memory hierarchy, design energy will

again be dominated by memory communication.

Mismatches between embedded DNNs and NN
accelerators: The need for co-design
As mentioned in the previous section, many earlier works

on NN accelerators are designed and/or evaluated using

relatively old network architectures such as AlexNet or

VGG on simple datasets. Convolutional layers with filter

sizes of 3� 3 or more are predominant in these networks.

However, recent trends show that the 1� 1 convolution has

become an essential building block for efficient DNNs [5,

14, 15, 53–55]. Furthermore, other lightweight DNNs such

as MobileNet [56] and ShuffleNet [57], which specifically

target mobile and embedded systems, replace the 3� 3

convolutions with a combination of a pointwise

convolutions and a depthwise convolutions. These building

blocks enable the implementation of lightweight DNNs in

terms of computational complexity and number of

parameters, but have a lower degree of parallelism and data

reuse, which may degrade speed and energy efficiency on

custom hardware due to the lack of inter-channel data

transfers.

Eyeriss [13] proposed a useful taxonomy that classifies

NN accelerators according to the type of data each PE

locally reuses. Since the degree of data reuse increases as

the memory hierarchy goes down, this type of classification

can be used to represent the characteristic reuse scheme of

NN accelerators. Four dataflows are presented in [13]:

weight stationary (WS), output stationary (OS), row

stationary, and no local reuse. This work will address two of

them.

Weight stationary: The WS dataflow is designed to

minimize the required bandwidth and the energy

consumption of reading model weights by maximizing the

accesses of the weights from the register file at the PE. The

PE preloads a weight of the convolution filters to its register

and then performs MAC operations over the entire input

feature map. In a weight stationary dataflow, the result of

each MAC operation is sent out of the PE in each cycle.

TPU [19] is one such example of a weight stationary

dataflow, which uses a general matrix-vector multiplier

computation mapping.

Output stationary: The OS dataflow is designed to

maximize the accesses of the partial sums within the PE. In

each cycle, the PE computes parts of the convolution that

will contribute to one output pixel and accumulates the

results within the PE accumulator. Once all the

computations for that pixel are finished, the final result is

sent out of the PE, and the PE moves to work on a new

pixel. One example of an early OS dataflow architecture is

ShiDianNao [32], which maps a 2-D block of the output

feature map to the PE array. Using a mesh interconnect

topology, the corresponding weight is broadcasted to all

PEs every cycle.

As domain-specific architectures, NN accelerators are

designed to take advantage of data reusability inherent in

the convolution layer. The type of data reused by different

accelerators depends on the underlying dataflow (output

stationary and weight stationary). Therefore, in situations

where only a certain kind of data reuse pattern exists in a

DNN model, accelerators implemented using different

dataflows may exhibit different acceleration performance.

We examine performance estimation results of various

configurations of a convolutional layer on hypothetical WS

and OS spatial dataflow architectures. The two reference

accelerators consist of a 32� 32 PE array, a 512-KB global

buffer, and a DMA controller. The PE array can read 32

input activations, 32 weights, and 32 partial sums (if

needed) from the buffer and can write 32 output activations

to the global buffer every cycle. In the array, only

connections between adjacent PEs are provided. We assume

that data are represented as 16-bit integers, and all data can

be double buffered in the global buffer (given the well-

defined structure of a convolutional layer). In the WS

IBM J. RES. & DEV. VOL. 63 NO. 6 PAPER 6 NOVEMBER/DECEMBER 2019 A. AMID ET AL. 6 : 7

setting, we assume that the input data of the PE array is in

the channel-major format. In the OS setting, each PE has

eight accumulator registers to reuse the input feature map

across eight different kernels. The effective DRAM

bandwidth is assumed to be 16 GB/s.

We evaluate convolutional filters of sizes 1� 1, 3� 3,

5� 5, as well as 3� 3 and 5� 5 depthwise convolutional

filters, all with an input batch size set to one. We learn from

our analysis that for standard 3� 3 and 5� 5 convolution

filters, the performance of the OS dataflow degrades if the

size of the feature map is smaller than 32� 32. Since the

OS dataflow maps the output feature map onto the PE array,

the array is underutilized if the width and the height of the

output feature map are not multiples of the size of the PE

array. For example, 87.5% of the PEs are idle during the

convolution on 8� 8 feature maps. This is common in the

processing of ImageNet classification networks, where the

spatial dimension of the feature maps is reduced by a

plurality of pooling layers.

An additional observation is that 1� 1 convolutions do

not perform well using an OS dataflow. This is since 1� 1

convolution layers do not have data reuse in the filter spatial

direction, which is utilized in the OS dataflow inter-PE

connections. We also observe that for WS dataflows, the PE

array may be underutilized in the case of a small number of

input or output channels to a layer. This is since a simple

mapping of a WS dataflow maps input channels and output

channels to the horizonal and vertical directions of the PE,

respectively, which causes underutilization of the array

when processing a small number of channels. A

representative example of this scenario is the first layer of

image processing networks, whose input consists of only

the three channels of an RGB or YCbCr image. Finally, in

both dataflows, depthwise convolutions exhibit a large gap

between the theoretical computational complexity

(“MACs”) and inference speed. This is due to low data

reuse in the OS dataflow and low PE utilization in the WS

dataflow. Nevertheless, the impact of the low data reuse in

the OS dataflow has a more significant effect on the speed

of depthwise convolution layers, making WS a better choice

for such layers.

Recent work by Yang et al. [58] presents alternative

evidence and conclusions regarding the importance of the

dataflow taxonomy in relation to other components of a

system architecture. Yang et al. emphasize the importance

of a properly sized memory hierarchy and program tiling

for energy consumption of DNN accelerators. Furthermore,

they make specific suggestions of memory hierarchies

consisting of multilevel register files, echoing the small

register file size choices in [59]. We agree with the results

of [58] that indicate a properly architected memory

hierarchy is fundamental to speed and energy efficiency of a

DNN accelerator, and we considered this in our design

presented in [59]. Nevertheless, once a memory hierarchy is

properly architected, we contend that there are still benefits

to dataflow (albeit, at smaller orders of magnitude), both in

inference speed and energy. Based on our understanding

from communications with the authors of [58], the energy

improvements presented in [59] are consistent with

measurements in their work.

Co-design of DNNs and NN accelerators
In this section, we describe the co-design of DNNs and NN

accelerators. Because the design of either a DNN or NN

accelerator is a significant enterprise, the co-design of these

is necessarily a coarse-grained process. Thus, we first

describe the design of the Squeezelerator, a NN accelerator

intended to accelerate SqueezeNet. We then continue with a

discussion of the design of SqueezeNext, a DNN designed

with the principles described in [60] and particularly

tailored to execute efficiently on the Squeezelerator.

Finally, we discuss the additional tune-ups of the

Squeezelerator for SqueezeNext.

Based on the analysis of previous experimental results,

we classify convolution layers into four categories: the first

convolutional layer (i.e., the first convolutional layer of the

DNN), pointwise convolution (also known as 1� 1

convolution), F�F convolution (where F > 1), and

depthwise convolution (DW). From the previous analysis,

we conclude it is advantageous for 1� 1 convolutional

layers to be accelerated by using the WS dataflow, while the

first convolutional layer and the depthwise convolutional

layers would preferably use the OS dataflow. Our

simulations indicate that 1� 1 convolutional layers are 1.4–

7.0� faster on a WS dataflow architecture than on an OS

dataflow (depending on the size of the feature map and the

number of channels). In contrast, relative to the WS

dataflow architecture, the first convolutional layer is 1.6–

6.3� faster on the OS dataflow architecture, and the

depthwise convolutional layers are 19–96� faster on the OS

dataflow architecture. In the case of the normal F�F

convolutions (in particular, 3� 3 convolutions), various

factors such as the size of the feature map and the sparsity of

the filters affect the preferable choice of dataflow.

Table 2 shows the relative percentage of computation

devoted to each layer type in a variety of DNNs. There is a

large variation in the percentages for each category over

these DNN models, and as a result, the proportion of the

layer operations that are well suited to the WS dataflow

ranges from 0% to 95%. While initially focused on

supporting SqueezeNet, this layer analysis led to the key

design principal of the Squeezelerator: To achieve high

efficiency for the entire DNN model, the accelerator

architecture must be able to choose WS dataflow or OS on a

layer-by-layer basis. Thus, the design of the Squeezelerator

is based on the layer-by-layer simulation as described

previously. As shown in Figure 2, the Squeezelerator

consists of a PE array, a global buffer, a preload buffer, a

6 : 8 A. AMID ET AL. IBM J. RES. & DEV. VOL. 63 NO. 6 PAPER 6 NOVEMBER/DECEMBER 2019

stream buffer, and a DMA controller. Intended for SoC

deployment, the PE array consists of N�N PEs

(configurable for simulation purposes from N ¼ 8 to 32),

connected to each other in a 2-D mesh. All PEs are

connected to a broadcast stream buffer, while the PEs

located at the top and bottom rows of the mesh are

additionally connected to the preload buffer and the global

buffer, respectively. The preload buffer prepares the data to

be transferred to the PE array before the operation starts,

and a stream buffer prepares the data to be continuously

transferred to the PE array during the operation. The global

buffer consists of 128-KB on-chip SRAM and switching

logic. Each PE contains a multiplexer for selecting one of

several input sources, a 16-bit integer multiplier, an adder

for accumulating the multiplication result, and a register file

for storing the intermediate result of the computation. In

order to support two dataflows, each design includes all the

interconnections required for both dataflows. The area

overhead is minimized by providing different data to the PE

array in each mode. For example, the broadcast buffer

provides the input activations in the WS mode, while it

provides the weights in the OS mode.

Squeezelerator processes a DNN layer by layer, and it

can be configured to select the dataflow style (OS or WS)

for each layer with no overhead incurred by switching

between dataflow styles. While the accelerator is running in

the OS dataflow mode, each PE is responsible for different

pixels in the 2-D block of the output feature map. Every

cycle, the corresponding input and weight are supplied to

each PE through inter-PE connection and from the

broadcast buffer, respectively. The operation sequence is as

follows: First, a 2-D block of the input feature map is

preloaded into the PE array from the preload buffer. Then,

the stream buffer broadcasts a weight to all the PEs, and

each PE multiplies the input by the weight and accumulates

the result in the local register file. For an N�N filter, this

step is repeated N2 times with different input and weight

data. Instead of reading the input from the preload buffer

every time, each PE receives the data from one of the

neighboring PEs. The whole process is repeated with

different input channels. When the computation for the

output block is finished, the result of each PE is stored to the

global buffer. This final step takes additional processing

time. To reduce the energy consumed by the global buffer,

PEs reuse each input they receive across different filters. In

addition, the stream buffer broadcasts only non-zero

weights to reduce the execution time by skipping

unnecessary computations.

In the WS dataflow mode, a PE row and a PE column

correspond to one input channel and one output channel,

respectively. In this way, each PE is responsible for

different elements of the weight matrix. Contrary to the OS

mode, the weights are preloaded into the PE array. Then,

the stream buffer broadcasts pixels from different input

channels to the PE array, and each PE multiplies the input

by its own weight. Each PE column sums the multiplication

results by forming a chain of adders from the top PE to the

bottom PE. This process is repeated until all the pixels in

the input feature maps are accessed.

A performance estimator evaluates the execution

cycles and the energy consumption of Squeezelerator.

Results describe inference times of individual images

(i.e., batch size ¼ 1) from the ImageNet benchmark suite

[7]. As mentioned previously, a batch size of one gives

less opportunity for data reuse, but reflects typical usage

in embedded vision applications for mobile phones or

automotive perception. The time consumed by the PE

array and the buffers reflects the micro-architecture,

while the DRAM access time is approximated using

latency and effective bandwidth (specifically, 100 cycles

and 16 GB/s). In order to hide the data transfer time

between the DRAM and the global buffer, we used

double buffering [61]. If the memory footprint of the

layer exceeds the capacity of the buffer, we used tiling

for scheduling of the nested convolution loops. We

follow the methodology used by [13] for energy

estimation, which multiplies the number of MACs and

memory accesses by unit energy. During simulation, we

conservatively set the sparsity, i.e., the number of zero

weights, of each DNN layer at 40%.

Table 2 Relative percentage of MAC operations

of specific layer types out of the total number of

MAC operations of a DNN model.

Figure 2

Block diagram of Squeezelerator (left) and PE (right).

IBM J. RES. & DEV. VOL. 63 NO. 6 PAPER 6 NOVEMBER/DECEMBER 2019 A. AMID ET AL. 6 : 9

We first evaluate Squeezelerator with the target DNN,

SqueezeNet v1.0. Figure 3 shows the inference time and

utilization per layer of SqueezeNet v1.0 for the reference

OS and WS architectures and the proposed hybrid

architecture. The overall trend of the Squeezelerator is

similar to that of the WS architecture, but the performance

of the first layer is noticeably improved. For most of the

3� 3 convolutions, the Squeezelerator chooses to use an

OS dataflow. Comparing the total processing time, the

hybrid architecture shows performance improvement of

26% and 106% on SqueezeNet v1.0 compared to the

reference OS and WS architectures, respectively. Table 3

shows the performance improvement of the Squeezelerator

over the reference architectures on a variety of lightweight

DNNs as well as AlexNet (for comparison purposes). The

improvement over the OS architecture has a high

correlation with the proportion of the 1� 1 convolutions in

the network. The benefits of supporting two dataflow

architectural styles are obvious in the case of MobileNet:

Since a naive WS architecture does not efficiently

accelerate the depthwise convolutions, these layers occupy

much larger execution time than the pointwise

convolutional layers, even though they account for only 3%

of the total number of computations. At the same time,

1� 1 convolutions, which account for 95% of the total

computation in MobileNet, greatly reduce the acceleration

performance of the OS architecture. Hence, the hybrid

architecture achieves about 2� and 6� speedup on

MobileNet compared to the OS and WS architectures.

AlexNet shows the least performance improvement because

it takes up 80% of energy and 73% of its run-time in the

three fully connected layers, which cannot take advantage

of hardware acceleration by either dataflow architecture.

MobileNet shows small savings on the energy consumption

relative to its significant performance improvement because

DRAM access consumes a larger proportion of total energy

consumption in this network than in other DNNs. This is

related to the low data reusability of the pointwise

convolutions and the depthwise convolutions. The energy

reduction of SqueezeNet V1.0 and Tiny Darknet is due to

their larger proportion of layers that is suited to the OS

dataflow.

We continue with our co-design process and describe

SqueezeNext [12], a new family of neural networks for

embedded systems, which was designed by performing

detailed analysis with the architectural simulator for

Squeezelerator. SqueezeNext was designed by studying

previous DNN models such as SqueezeNet with the aim of

using structure of layers to further reduce model

parameters, as well as avoiding MobileNet’s depthwise

separable convolutions that have poor arithmetic intensity.

Studying the hardware utilization of different layers of

SqueezeNext on the Squeezelerator revealed that initial

layers had low MACs/cycle counts, which noticeably

affected hardware performance, as shown in Figure 4. One

important optimization used in SqueezeNext is a filter size

reduction for the first layer from 7� 7 to 5� 5; this layer

has significant impact on inference time as its input feature

Figure 3

Per-layer inference time (bars) and utilization efficiency (lines) of SqueezeNet v1.0 on the reference WS/OS and Squeezelerator.

Table 3 Speed and energy improvements of

squeezelerator over OS or WS architectures.

6 : 10 A. AMID ET AL. IBM J. RES. & DEV. VOL. 63 NO. 6 PAPER 6 NOVEMBER/DECEMBER 2019

map is relatively large. Another contributing factor to poor

hardware utilization is the small number of channels in the

initial layers. As indicated earlier, such scenarios result in

not all PEs being utilized and limited opportunity for

memory latency hiding. One solution to this would be to

simply reduce the number of layers early in the DNN;

however, a naive reduction may lead to a degradation in

accuracy. Instead, we reduce the number of layers early in

the DNN and assign more layers to later stages that allow

for higher hardware utilization. While this simple change

results in a very small change in the overall MACs used in

inference, it reduces both energy and inference time [14].

Five different variants of these two classes of optimizations

are shown in Figure 4. In fact, the optimized versions have

slightly better accuracy as compared to the initial variant.

Following this design of SqueezeNext, we returned to the

co-design of the Squeezelerator and fine-tuned the hardware

utilization by doubling the number of registers in the register

file of each PE from 8 registers to 16. The combination of

these optimizations results in SqueezeNext being 2.59�
faster and 2.25� more energy-efficient than SqueezeNet 1.0

(and 8.26� and 7.5� when compared to AlexNet) on the

Squeezelerator, without any degradation in accuracy.Figure

5 shows the spectrum of accuracy versus power and accuracy

versus inference time for different DNN families. Ideally, we

would like higher accuracy with lower power and inference

time. As we can see, the SqueezeNext family using the

Squeezelerator provides such favorable solutions, which

allows the user to select the right DNN from this family

based on the target application’s constraints.

Conclusion
Embedded vision applications bring power, energy,

memory, and speed constraints. In this article, we surveyed

Figure 4

Per-layer inference time (lower is better) is shown along the left y-axis for five variants (v1–v5) of 1.0-SqNxt-23 architecture. PE utilization is shown

by the dotted line. The initial layers have very low utilization, which adversely affects inference time and energy consumption.

Figure 5

Spectrum of accuracy versus energy and inference speed for Squeeze-

Next, SqueezeNet (v1.0 and v1.1), Tiny DarkNet, and MobileNet. The

size of model (model parameters) is represented by the size of the cir-

cle. SqueezeNext shows superior Paretto curves with respect to all

three metrics (in both plots, higher and to the left is better).

IBM J. RES. & DEV. VOL. 63 NO. 6 PAPER 6 NOVEMBER/DECEMBER 2019 A. AMID ET AL. 6 : 11

and analyzed the properties and limitations of efficient

DNN and NN accelerators related to these constraints. As a

result, we also illustrated a coarse-grain co-design approach

for the design of DNNs and NN accelerators that meet these

constraints. Our efforts at a NN accelerator led to the novel

design of the Squeezelerator, which can perform either

weight-stationary dataflow or output-stationary dataflow on

a layer-by-layer basis. On popular DNNs for mobile

applications, this accelerator design is 1.1–6.35� faster

than accelerators that use only a single dataflow

architecture. To illustrate the additional value of tailored

DNN design to the accelerator, we revisited the design of

SqueezeNet and produced the SqueezeNext family: Some

members of the SqueezeNext family are 2.26� faster than

SqueezeNet 1.0, improve the energy by 2.25� , and are

more accurate on image classification benchmarks (we

achieve 59.2% top-1 versus 57.1% of SqueezeNet) [14]. We

completed our design study by then revisiting the design of

the Squeezelerator running SqueezeNext. As SqueezeNext

has similar layer characteristics to SqueezeNet, only some

fine-tuning of register file size was required to optimize

local data reuse. Combining the Squeezelerator NN

accelerator architecture and the SqueezeNext family of

efficient DNNs allows for better design-point selection and

proper consideration of the full set of constraints of

embedded vision applications.

Acknowledgment
This work was supported by a gracious fund from Intel

Corporation and Samsung and by ADEPT Lab affiliates

Apple, Futurewei, Google, and Seagate. We would like to

thank Intel VLAB team for providing us with access to their

computing cluster. We also gratefully acknowledge the

support of NVIDIA Corp. with the donation of the Titan Xp

GPU used for this research. The views and opinions of

authors expressed herein do not necessarily state or reflect

those of the sponsors or affiliates.

References
1. Y. LeCun, C. Cortes, and C. J. C. Burges, MNIST Handwritten

Digit Database, 2010.
2. A. Krizhevsky, “Learning multiple layers of features from tiny

images,” Univ. Toronto, Toronto, ON, Canada, Tech. Rep. TR-
2009, 2009.

3. J. Huang, V. Rathod, C. Sun, et al., “Speed/accuracy trade-offs for
modern convolutional object detectors,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 3296–3297.

4. S. Gupta and M. Tan, “EfficientNet-EdgeTPU: Creating
accelerator-optimized neural networks with AutoML,” 2019.
[Online]. Available: htt_ps://ai.googleblog.com/2019/08/
efficientnet-edgetpu-creating.html

5. F. N. Iandola, S. Han, M. W. Moskewicz, et al., “SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and <0.5 MB
model size,” arXiv: 1602.07360, 2016.

6. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in Proc.
25th Int. Conf. Neural Inf. Process. Syst., 2012, pp. 1097–1105.

7. J. Deng, W. Dong, R. Socher, et al., “Imagenet: A large-scale
hierarchical image database,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2009, pp. 248–255.

8. T.-Y. Lin, M. Maire, S. Belongie, et al., “Microsoft Coco:
Common objects in context,” in Proc. Eur. Conf. Comput. Vis.,
2014, pp. 740–755.

9. M. Cordts, M. Omran, S. Ramos, et al., “The cityscapes dataset for
semantic urban scene understanding,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 3213–3223.

10. A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for
autonomous driving? The Kitti vision benchmark suite,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2012, pp. 2254–3361.

11. “Evaluating efficiency of several types of convolutions,” 2017.
[Online]. Available: htt_ps://github.com/yu4u/conv-benchmark

12. X. Wang, F. Yu, Z.-Y. Dou, et al., “SkipNet: Learning dynamic
routing in convolutional networks,” in Proc. Eur. Conf. Comput.
Vision, 2018, pp. 409–424.

13. Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,”
ACM SIGARCH Comput. Archit. News, vol. 44, no. 3, pp. 367–
379, 2016.

14. A. Gholami, K. Kwon, B. Wu, et al., “SqueezeNext: Hardware-
aware neural network design,” in Proc. 2018 IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. Workshops, Salt Lake City, UT,
USA, 2018, pp. 1719–1728, doi: 10.1109/CVPRW.2018.00215.

15. G. Huang, Z. Liu, L. Van Der Maaten, et al., “Densely connected
convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 4700–4708.

16. S. Williams, A. Waterman, and D. Patterson, “Roofline: An
insightful visual performance model for multicore architectures,”
Commun. ACM, vol. 52, no. 4, pp. 65–76, 2009.

17. J. Hufmann, J. Eitzinger, and D. Fey, “Execution-cache-memory
performance model: Introduction and validation,” arXiv:
1509.03119, 2015.

18. M. Horowitz, “Computing’s energy problem (and what we can do
about it),” in Proc. IEEE Int. Solid-State Circuits Conf., 2014, pp.
1–12.

19. N. P. Jouppi, C. Young, N. Patil, et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proc. 44th
Annu. Int. Symp. Comput. Archit., 2017, pp. 1–12.

20. J. Lee, C. Kim, S. Kang, et al., “UNPU: A 50.6 TOPS/W unified
deep neural network accelerator with 1b-to-16b fully-variable
weight bit-precision,” in Proc. IEEE Int. Solid-State Circuits
Conf., 2018, pp. 218–220.

21. K. Ueyoshi, K. Ando, K. Hirose, et al., “QUEST: A 7.49TOPS
multi-purpose log-quantized DNN inference engine stacked on
96MB 3D SRAM using inductive-coupling technology in 40nm
CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf., 2018, pp.
216–218.

22. B. Moons, R. Uytterhoeven, W. Dehaene, et al., “Envision: A
0.26-to-10TOPS/W subword-parallel dynamic-voltage-accuracy-
frequency-scalable convolutional neural network processor in
28nm fdsoi,” in Proc. IEEE Int. Solid-State Circuits Conf., 2017,
pp. 246–247.

23. “Green500 List for November 2017,” 2017. [Online]. Available:
htt_ps://www_.top500.org/green500/lists/2017/11/

24. W. Feng and K. Cameron, “The Green500 list: Encouraging
sustainable supercomputing,” Computer, vol. 40, no. 12, pp. 50–
55, 2007.

25. “First Quarter 2018 SPECpower_ssj2008 Results,” 2018.
[Online]. Available: htt_ps://www_.spec.org/power_ssj2008/results/
res2018q1/

26. J. L. Hennessy and D. A. Patterson, Computer Architecture: a
Quantitative Approach. Amsterdam, The Netherlands: Elsevier,
2011.

27. K. Asanovic, R. Bodik, B. C. Cantanzaro, et al., “The landscape of
parallel computing research: A view from Berkeley,” Univ.
California, Berkeley, Berkeley, CA, USA, Tech. Rep. UCB/
EECS-2006-183, 2006.

28. K. Asanovic, R. Bodik, J. Demmel, et al., “A view of the parallel
computing landscape,” Commun. ACM, vol. 52, no. 10, pp. 56–67,
2009.

6 : 12 A. AMID ET AL. IBM J. RES. & DEV. VOL. 63 NO. 6 PAPER 6 NOVEMBER/DECEMBER 2019

https://dx.doi.org/10.1109/CVPRW.2018.00215

29. K. Keutzer and T. Mattson, “A design pattern language for
engineering (parallel) software,” Intel Technol. J., vol. 13, no. 3,
2010.

30. H.-T. Kung and C. E. Leiserson, “Systolic arrays (for VLSI),” in
Proc. Sparse Matrix Proc., 1979, vol. 1, pp. 256–282.

31. H.-T. Kung, “Why systolic architectures?” IEEE Comput., vol. 15,
no. 1, pp. 37–46, Jan. 1982.

32. Z. Du, R. Fasthuber, T. Chen, et al., “ShiDianNao: Shifting vision
processing closer to the sensor,” ACM SIGARCH Comput. Archit.
News, vol. 43, no. 3, pp. 92–104, 2015.

33. W. Lu, G. Yan, J. Li, et al., “FlexFlow: A flexible dataflow
accelerator architecture for convolutional neural networks,” in
Proc. IEEE Int. Symp. High Perform. Comput. Archit., 2017, pp.
553–564.

34. S. Han, X. Liu, H. Mao, et al., “EIE: Efficient inference engine on
compressed deep neural networks,” in Proc. 43rd Annu. Int. Symp.
Comput. Archit., 2016, pp. 243–254.

35. A. Parashar, M. Rhu, A. Mukkara, et al., “SCNN: An accelerator
for compressed-sparse convolutional neural networks,” in Proc.
44th Annu. Int. Symp. Comput. Archit., 2017, pp. 27–40.

36. G. Desoli, N. Chawla, T. Boesch, et al., “A 2.9 TOPS/W deep
convolutional neural network SoC in fd-soi 28nm for intelligent
embedded systems,” in Proc. IEEE Int. Solid-State Circuits Conf.,
2017, pp. 238–239.

37. D. Bankman, L. Yang, B. Moons, et al., “An always-on 3.8 uJ/
86% CIFAR-10 mixed-signal binary CNN processor with all
memory on chip in 28nm CMOS,” in Proc. IEEE Int. Solid-State
Circuits Conf., 2018, pp. 222–224.

38. J. Lee, J. Lee, D. Han, et al., “LNPU: A 25.3 TFLOPS/W sparse
deep-neural-network learning processor with fine-grained mixed
precision of FP8-FP16,” in Proc. IEEE Int. Solid-State Circuits
Conf., 2019, pp. 142–143.

39. C. Kim, S. Kang, D. Shin, et al., “A 2.1 TFLOPS/W mobile deep
RL accelerator with transposable PE array and experience
compression,” in Proc. IEEE Int. Solid-State Circuits Conf., 2019,
pp. 136–137.

40. J. Yue, R. Liu, W. Sun, et al., “A 65nm 0.39-to-140.3 TOPS/W 1-
to-12b unified neural-network processor using block-circulant-
enabled transpose-domain acceleration with 8.1� higher TOPS/
mm2 and 6T HBST-TRAM-based 2D data-reuse architecture,” in
Proc. IEEE Int. Solid-State Circuits Conf., 2019, pp. 138–139.

41. J. Song, Y. Cho, J.-S. Park, et al., “An 11.5 TOPS/W 1024-MAC
butterfly structure dual-core sparsity-aware processing unit in 8nm
flagship mobile SoC,” in Proc. IEEE Int. Solid-State Circuits
Conf., 2019, pp. 130–131.

42. S. Yin, P. Ouyang, S. Tang, et al., “A 1.06-to-5.09 TOPS/W
reconfigurable hybrid-neural-network processor for deep learning
applications,” in Proc. Symp. VLSI Circuits, 2017, pp. C26–C27.

43. F. N. Buhler, P. Brown, J. Li, et al., “A 3.43 TOPS/W 48.9 pJ/
pixel 50.1 nJ/classification 512 analog neuron sparse coding
neural network with on-chip learning and classification in 40nm
CMOS,” in Proc. Symp. VLSI Circuits, 2017, pp. C30–C31.

44. K. Ando, K. Ueyoshi, K. Orimo, et al., “BRein memory: A 13-
layer 4.2 K neuron/0.8 M synapse binary/ternary reconfigurable
in-memory deep neural network accelerator in 65 nm CMOS,” in
Proc. Symp. VLSI Circuits, 2017, pp. C24–C25.

45. Z. Yuan, J. Yue, H. Yang, et al., “Sticker: A 0.41-62.1 TOPS/W
8Bit neural network processor with multi-sparsity compatible
convolution arrays and online tuning acceleration for fully
connected layers,” in Proc. Symp. VLSI Circuits, 2018, pp. 33–34.

46. M. Anders, H. Kaul, S. Mathew, et al., “2.9 TOPS/W
reconfigurable dense/sparse matrix-multiply accelerator with
unified INT8/INT16/FP16 datapath in 14nm tri-gate CMOS,” in
Proc. Symp. VLSI Circuits, 2018, pp. 39–40.

47. S. Yin, P. Ouyang, J. Yang, et al., “An ultra-high energy-efficient
reconfigurable processor for deep neural networks with binary/
ternary weights in 28nm CMOS,” in Proc. Symp. VLSI Circuits,
2018, pp. 37–38.

48. B. Fleischer, S. Shukla, M. Jiegler, et al., “A scalable multi-
teraOPS deep learning processor core for AI training and
inference,” in Proc. Symp. VLSI Circuits, 2018, pp. 35–36.

49. D. Shin, J. Lee, J. Lee, et al., “DNPU: An 8.1 TOPS/W
reconfigurable CNN-RNN processor for general purpose deep
neural networks,” in Proc. IEEE Int. Solid-State Circuits Conf.,
2017, pp. 240–241.

50. K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv: 1409.1556,
2014.

51. T. Karnik, D. Kurian, P. Aseron, et al., “A cm-scale self-powered
intelligent and secure IoT edge mote featuring an ultra-low-power
SoC in 14nm tri-gate CMOS,” in Proc. IEEE Int. Solid-State
Circuits Conf., 2018, pp. 46–48.

52. Y. LeCun, “Deep learning hardware: Past, present, and future,” in
Proc. IEEE Int. Solid-State Circuits Conf., 2019, pp. 12–18.

53. K. He, X. Zhang, S. Ren, et al., “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2016, pp. 770–778.

54. C. Szegedy, W. Liu, Y. Jia, et al., “Going deeper with
convolutions,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2015, pp. 1–9.

55. B. Wu, A. Wan, X. Yue, et al., “Shift: A zero FLOP, zero
parameter alternative to spatial convolutions,” in Proc. 2018
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Salt Lake City,
UT, USA, 2018, pp. 9127–9135, doi: 10.1109/CVPR.2018.00951.

56. A. G. Howard, M. Zhu, B. Chen, et al., “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,”
arXiv: 1704.04861, 2017.

57. X. Zhang, X. Zhou, M. Lin, et al., “Shufflenet: An extremely
efficient convolutional neural network for mobile devices,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 6848–6856.

58. X. Yang, M. Gao, J. Pu, et al., “DNN dataflow choice is
overrated,” arXiv: 1809.04070, 2018.

59. K. Kwon, A. Amid, A. Gholami, et al., “Co-design of deep neural
nets and neural net accelerators for embedded vision
applications,” in Proc. 55th Annu. Des. Autom. Conf., 2018, pp. 1–
6.

60. F. Iandola and K. Keutzer, “Small neural nets are beautiful:
Enabling embedded systems with small deep-neural-network
architectures,” in Proc. 12th IEEE/ACM/IFIP Int. Conf.
Hardware/Softw. Codesign Syst. Synthesis Companion, 2017, p. 1.

61. D. Kim, R. Managuli, and Y. Kim, “Data cache and direct
memory access in programming mediaprocessors,” IEEE Micro,
vol. 21, no. 4, pp. 33–42, Jul./Aug. 2001.

Received December 15, 2018; accepted for publication

September 11, 2019

Alon Amid University of California, Berkeley, Berkeley, CA 94720
USA (alonamid@berkeley.edu). Mr. Amid received a B.Sc. degree in
electrical engineering from Technion – Israel Institute of Technology,
Haifa, Israel. He is currently working toward a doctoral degree in the
Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, Berkeley, CA, USA. His current
research interests include parallel and distributed computing, energy-
efficient processors and architectures, and hardware-software co-design.

Kiseok Kwon Samsung Research, Samsung Electronics, Seoul,
South Korea (kiseok.kwon@samsung.com). Mr. Kwon received a B.S.
degree in electrical engineering from Yonsei University, Seoul, South
Korea, and an M.S. degree in electrical engineering from Korea
Advanced Institute of Science and Technology, Daejeon, South Korea.
He is a Senior Engineer with Samsung Research, Seoul. He has held
multiple positions at Samsung relating to embedded systems and
computer architecture, and has been a Visiting Scholar with the BAIR
Lab, University of California, Berkeley, Berkeley, CA, USA.

Amir Gholami University of California, Berkeley, Berkeley, CA
94720 USA (amirgh@berkeley.edu). Dr. Gholami received a B.Sc.

IBM J. RES. & DEV. VOL. 63 NO. 6 PAPER 6 NOVEMBER/DECEMBER 2019 A. AMID ET AL. 6 : 13

https://dx.doi.org/10.1109/CVPR.2018.00951

degree from Tehran Polytechnic, Tehran, Iran, and MSE and Ph.D.
degrees from UTAustin, Austin, TX, USA. He is a Postdoctoral
Research Fellow in the BAIR Lab. He worked as an intern at AMD and
Nvidia. His current research interests include large-scale training of
neural networks, stochastic second-order methods, and robust
optimization. He is a Melosh Medal finalist, and the recipient of UT
Austin’s best doctoral dissertation award in 2018, best student paper
award in SC'17, Gold Medal in the ACM Student Research
Competition, as well as best student paper finalist in SC’14.

Bichen Wu University of California, Berkeley, Berkeley, CA 94720
USA (bichen@berkeley.edu). Mr. Wu received a B.E. degree from
Tsinghua University, Beijing, China, in 2013. He is currently working
toward a Ph.D. degree in the Berkeley AI Research Lab, University of
California, Berkeley, Berkeley, CA, USA. His research focuses on
efficient deep learning, AutoML, neural architecture search, and
autonomous driving. He was the recipient of the best paper award at the
13th Embedded Vision Workshop at CVPR2017, and he serves as a
reviewer for machine learning conferences including CVPR, ICCV, and
ICLR.

Krste Asanovi�c University of California, Berkeley, Berkeley, CA
94720 USA (krste@berkeley.edu). Dr. Asanovi�c received a Ph.D. degree
in computer science from University of California, Berkeley, Berkeley,
CA, USA, in 1998. He joined the faculty at MIT, receiving tenure in
2005. He returned to join the faculty at Berkeley in 2007. His main

research areas include computer architecture, VLSI design, parallel
programming, and operating system design. He is currently the Co-
Director of the Berkeley ADEPT Lab tackling the challenge of
deploying custom silicon to meet new application demands. He leads
the free RISC-V ISA project, is the Chairman of the RISC-V
Foundation, and has recently co-founded SiFive Inc. to support
commercial use of RISC-V processors. He is also an Associate Director
with the Berkeley Wireless Research Center. He was the recipient of the
NSF CAREER award. He is an ACM Fellow and an IEEE Fellow.

Kurt Keutzer University of California, Berkeley, Berkeley, CA 94720
USA (keutzer@berkeley.edu). Dr. Keutzer received a Ph.D. degree in
computer science from Indiana University, Bloomington, IN, USA. He
joined AT&T Bell Laboratories as a Member of Technical Staff. He later
joined Synopsys, Inc., where he eventually rose to become CTO and
SVP of Research. Following that, he became a Professor of EECS with
the University of California, Berkeley, Berkeley, CA, USA. His
contributions to electronic design automation were recognized at the
50th Design Automation Conference, where he was noted as a Top 10
most cited author, as an author of a Top 10 most cited paper, and as one
of only three people to have won four best paper awards at that
conference. He was the recipient of the Best Paper Award at the 13th
IEEE Embedded Computer Vision Workshop at CVPR and at the 47th
International Conference on Parallel Processing. He has authored six
books and more than 200 refereed publications. He was named a Fellow
of the IEEE in 1996.

6 : 14 A. AMID ET AL. IBM J. RES. & DEV. VOL. 63 NO. 6 PAPER 6 NOVEMBER/DECEMBER 2019

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

