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ABSTRACT

This work presents a RISC-V system-on-chip (SoC) with
fully-integrated switched-capacitor DC-DC converters, adap-
tive clock generators, mixed-precision floating-point vector
accelerators, a 5 Gb/s serial memory interface, and an inte-
grated power-management unit (PMU) manufactured in 28nm
FD-SOI. The vector accelerator improves performance and
energy per task on a matrix multiplication kernel by 15×
and 13× respectively, and end-to-end performance on machine
learning and graph analytical workloads by 8×-12×. Inclusion
of microarchitectural counters and fine spatial power-domain
granularity facilitate predictive power-management algorithms
that reduce energy per task by 13-22% compared to the
baseline scalar processor. System-level simulations of a range
of SoC architectural variations with multiple cores and vector
accelerators complement the silicon measurements.

I. SYSTEM DESCRIPTION

The drive for increased performance under constant power
envelope requires the development of accelerator-rich archi-
tectures to enable specialization for computational domains.
Open-source system-on-a-chip generators based on the RISC-
V instruction set architecture enable exploration of domain-
specific hardware acceleration [1]. For example, popular work-
loads, such as deep neural networks (DNNs) may require
varying precision between different layers [2] and training
and inference tasks, which can be efficiently accelerated by
using vector engines. In specialized architectures, accelerators
dominate the area and energy budget, but given their relatively
low utilization need to be efficiently managed. Simultaneously,
performance of all compute systems highly depends on the
memory system that supports the compute units.

The test system, named Hurricane-2, is based on 64-bit
RISC-V Rocket in-order cores with a dual-lane vector ac-
celerator and dedicated switched capacitor DC-DC units. The
Rocket core is an in-order 5-stage single-issue pipeline [1]
supporting the RISC-V RV64G ISA version 2.1 and the 1.9
privileged ISA. It includes separate 16KiB L1 instruction
and data caches, branch predictors, page-table walker, and
is capable of computing a single- or double-precision fused
multiply-add (FMA) in every cycle. The Hwacha [3] vector
accelerator is a multi-lane (design-time configurable) decou-
pled vector architecture optimized for ASIC processes. Each

vector lane includes four banks of SRAM-based vector register
file, a 128-bit memory port to an L2 cache, and four double-
precision, eight single-precision, and 16 half-precision FMA
units, enabling 8 double-precision, 16 single-precision, or 32
half-precision floating-point operations per cycle per lane.
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Fig. 1: Hurricane-2 SoC block diagram, with a single Rocket core,
dual-lane vector accelerator, caches, power management and periph-
erals.

The Hurricane-2 SoC in Figure 1 contains a single Rocket
application core, with a dual-lane vector accelerator capable of
16 double-precision, 32 single-precision, or 64 half-precision
floating-point operations per cycle. In addition, the SoC in-
cludes a power management unit (PMU) comprised of a small
integer-only RISC-V core, capable of controlling all on-chip
peripherals. The application core and power management unit
share a 256KiB 4-bank, 8-way L2 cache. The backside of the
L2 cache is connected by a runtime-configurable switch to
three off-chip memory interfaces: a low-speed 4-bit parallel
interface; a test-site with a set of eight 5-Gb/s serial links;
and a DDR4 PHY test site.
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II. TEST CHIP IMPLEMENTATION AND MEASUREMENT

The Hurricane-2 test chip was manufactured in 28nm fully-
depleted silicon-on-insulator (FD-SOI) process with ultra-thin
body and buried oxide (UTBB), measuring 3.9mm by 4.3mm.
The die photograph is shown in Figure 2, illustrating that
vector accelerators occupy a significantly larger area than the
scalar Rocket core. The processor cores, the accelerator, and
the digital uncore are based on the open-source Rocket Chip
generator, written in Chisel. For testing, a BGA-packaged chip
is attached to a daughterboard alongside an FMC connector.
The daughterboard connects to a motherboard, which contains
clock generators, voltage sources, and voltage and current
reference generators. Finally, the motherboard attaches to an
FPGA which can configure the motherboard and provide
access to its DRAM over the parallel I/O and serial links.

Figure 3 shows a sweep of the chip’s operating points over
a range of voltages and frequencies. The most energy-efficient
point is at 780mV and 115MHz, where the vector accelerator
achieves 22.3 double-precision GFLOPS/W, and 36.5 half-
precision GFLOPS/W. In comparison to the scalar proces-
sor’s 1.76 double-precision GFLOPS/W, the vector accelerator
achieves a 15× improvement in performance and a 13×
increase in energy per operation over the scalar core alone.
Hurricane-2’s micro-benchmark performance is comparable to
similar state-of-the-art systems, summarized in Table I.

III. POWER MANAGEMENT

The Hurricane-2 SoC features a dedicated RISC-V PMU
that performs power and system management functions, sup-
porting a larger application core with an accelerator. The
PMU can execute independent power management code which
monitors the performance and power utilization of the system
with a set of memory-mapped counters and control registers.
This set of counters enables the PMU to measure the memory
bandwidth being used by the application core’s L1 and L2
caches, the rate of instruction execution, and the rate of energy
consumption by the DC-DC converters. Hurricane-2 further
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Fig. 2: Hurricane 2 chip micrograph.

Ref. Hurricane-1
[4]

Hurricane-2 [5] [6] [7] [2]

Technology 28nm
FD-SOI

28nm
FD-SOI

28nm
FD-SOI

28nm
FD-SOI

22nm
FinFET

28nm
FD-SOI

Die size
(mm2)

7.84 16.7 3.03 2.37 160 1.87

Off-chip
components

No No No No Package N/A

Peak energy
efficiency

19.6 GD-
FLOPS/W

36.5 GH-
FLOPS/W

41.8 GD-
FLOPS/W

26.2 GD-
FLOPS/W

Un-
specified

10
TOPS /

W†
DVFS

transition
time (µs)

0.5 0.5 0.5 N/A 0.5 Un-
specified

Volt. domain
granularity

2.5
mm2

0.5
mm2

3.03
mm2

2.37
mm2

< 0.5
mm2

0.9
mm2

†1 four-bit MAC = 2 operations
TABLE I: Comparison with prior art

includes an additional set of counters within the vector unit,
tracking the type and number of instructions pending, instruc-
tions in flight, and memory operations in flight, allowing for
monitoring the utilization of the vector engine.

The chip includes multiples sets of switched-capacitor DC-
DC converters [6] paired with adaptive clock generators [5],
powering the core and accelerator voltage domains. The on-
chip DC-DC converters in conjunction with the microarchitec-
tural counters and a fully programmable PMU enable for the
implementation of fine-grained dynamic voltage and frequency
scaling (DVFS) algorithms.

The effectiveness of the fully-programmable PMU for fined-
grained adaptive DVFS is demonstrated by comparing several
DVFS algorithms across three synthetic benchmarks executed
and measured on the test-chip (Figure 4). The baseline algo-
rithm (none) runs the application core at maximum voltage and
frequency. The simple algorithm replicates [5] by increasing
voltage and frequency during periods of high activity noted
by the DC-DC toggle rate. The last two algorithms are driven
by the architectural performance counters. They monitor the
miss rates of the L1 data caches (AVS1) and L2 cache (AVS2)
respectively, and decrease voltage and frequency when the core
is in a memory-bound program phase.

The benchmarks run on the application core and repeatedly
alternate between computing a median filter and performing a
generic matrix multiply (GEMM) of 24-, 64-, or 128-element
square matrices. The 24-element dataset fits in L1 cache,

Fig. 3: Hurricane-2 matrix multiplication (DGEMM) shmoo plot.
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so no cache misses occur, obviating the adaptive algorithms.
The 64-element dataset only fits in L2 cache. The adaptive
algorithms are able to identify the memory-bound regions,
but the L1 monitor has false positives for phases that miss
in the L1 but hit in the L2. Finally, in the 128-element
benchmark, all L1 misses become L2 misses, so both adaptive
algorithms successfully slow down the core during memory-
bound phases, saving energy in the core. These measurements
demonstrate that fine-grained power management based on
monitoring architectural counters, when they are available,
outperforms management solutions based on monitoring power
consumption due to its faster and deterministic response.
Specifically, the example in Figure 4 demonstrates that the
addition and fine-grained monitoring of just two key architec-
tural performance counters can provide up to 14% additional
energy savings compared to traditional DVFS algorithms.
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Fig. 4: Comparison of DVS algorithms in Hurricane-2

IV. VECTOR PROCESSOR SYSTEM ANALYSIS

The Hwacha vector accelerator was designed to execute
data-parallel workloads in Linux-based data-intensive applica-
tions. Common workloads require a GNU/Linux environment
to utilize a variety of libraries and system services. The Caffe
machine learning framework running the SqueezeNext [8]
deep neural network (DNN) is a representative application for
running full-system machine-learning inference and training,
while a PageRank workload integrated into the GraphMat
[9] framework represents a sparse full-system workload for
graph processing. We have used FireSim [10] to evaluate these
applications across the architectural design space of SoCs
using the Hwacha vector accelerator (Fig. 5).

FireSim is an open-source FPGA-accelerated RTL-derived
cycle-exact simulation environment on the Amazon EC2 F1
public cloud. The FireSim environment constructs an FPGA-
based simulator from the source RTL of the simulated design,
making it a single-source-of-truth for both simulation and
chip designs. FireSim enables integration of the simulated
SoC with various peripheral and system-level models such
as DDR3 memory [11], Ethernet NIC models, and UART
interfaces. Firesim has been recently used to evaluate the
performance of a commercial SoC [12]. Unlike conventional
FPGA prototyping approaches, FireSim and its underlying
compiler transform the target RTL description into a simu-
lator rather than synthesize the target RTL onto the FPGA.
This transformation enables decoupling between the simulated

target design and the host FPGA platform, which allows for
deterministic timing-accurate modeling of memory and I/O
interfaces. In particular, full-system evaluation requires an
outer memory system, which is not available on most test
chips. The Hurricane-2 SoC includes an experimental third-
party DDR3/4 interface, which was not functional on our test
chip. Instead, each simulated SoC instance includes a DDR3
memory model with a 14-14-14 speed-grade. We evaluate
twelve different SoC configurations by using FireSim and
varying the number of processor tiles, the number of vector
lanes, and the size of L2 cache.

In particular, we are interested in comparing the Hurricane-
2 architecture with the architecture of our previous test chip,
Hurricane-1 [4], which was also fabricated in 28nm UTBB
FD-SOI process and implements an architecture that contains
dual Rocket application cores, each with a single-lane Hwacha
vector accelerator. The Hurricane-1 configuration enables ad-
ditional task-level parallelism, in contrast to Hurricane-2’s
single-core, dual-lane configuration which exploits more data-
level parallelism.

Evaluation results confirm that application parameters such
as batch size or graph size affect the speedup obtained
from an SoC configuration (Fig. 6). For DNN inference,
additional vector lanes do not provide additional speedup
for batch size increase from 1 to 16. Hence, for infrequent
inference applications, a dual-lane/single-tile SoC configura-
tion such as Hurricane-2 is more beneficial, while for batch-
oriented applications, a dual-tile/single-lane configuration such
as Hurricane-1 is better. This is not an obvious result, as
batched applications are known to expose more data-level
parallelism than unbatched applications. We postulate that this
result is due to non-vectorized processing that is required
of the additional data in the batched workload. This non-
vectorized processing is parallelized across the two scalar
cores in the Hurricane-1, while it cannot be parallelized using
the single scalar core in the Hurricane-2. In PageRank, the
most significant speedup (25x) is obtained for a small graph
that fits in L2 cache and utilizes the added computational
resources. Between the Hurricane-1 and Hurricane-2 config-
urations, the dual-tile/single-lane design achieves the greatest
PageRank speedup, because fine-grained load balancing across
the decoupled cores targets the irregular structure of graph
representations better. Notably, variations in L2 cache size
have minimal effects on all workload types, indicating little
temporal locality within the applications. The only significant
effect of cache size on speedup relates to the PageRank
execution on the wikiVote graph which fits entirely within
even the smallest evaluated cache size.

V. CONCLUSION
This work demonstrates programmable fine-grained power-

management and system analysis of RISC-V vector proces-
sors. Through hybrid use of test chips and FPGA-accelerated
simulation, this work presents both silicon measurements and
FPGA-simulated full-system analysis of power and perfor-
mance resulting in a 13-22% energy-per-task improvement and
8×-12× performance improvement on relevant workloads.
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Fig. 5: FPGA-accelerated simulation with DDR3, block device, network, and other peripheral models, using various configurations of
generated target SoC RTL. The generated configurations are varied across the numbers of tiles (marked in red), numbers of vector lanes per
tile (marked in blue) and the L2 cache size (marked in yellow)
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Fig. 6: Design space evaluation of the vector accelerator across tiles (T), lanes (L) and L2 cache sizes (C, KiB). Top: inference and training
of the SqueezeNext DNN model on the Caffe framework using the vector accelerator compared to a minimal reference scalar implementation
(1T512C). Larger batch sizes expose more parallelism, which enables improved performance using multiple tiles and multiple vector lanes.
Note that L2 cache size does not have a consistent effect. Bottom: vectorized PageRank using GraphMat infrastructure on different graphs,
compared to a minimal reference scalar implementation. The dual-tile/single-lane configuration provides greater speedup than the single-
tile/dual-lane configuration (with similar area overheads). L2 cache size is not a factor for speedups on large graphs.
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