Department: Head
Editor: Name, xxxx@email

Accessible, FPGA
Resource-Optimized
Simulation of Multi-Clock
Systems in FireSim

David Biancolin, Albert Magyar, Sagar Karandikar, Alon Amid, Borivoje Nikoli¢, Jonathan

Bachrach, Krste Asanovié
University of California, Berkeley

Abstract—Given the complexity of modern systems-on-chip (SoCs), hardware-assisted
verification is an integral part of the chip-design process. However, chip designers often need to
choose between richly featured but expensive emulation platforms or faster, cheaper, but less
debuggable FPGA prototyping solutions. FireSim, an open-source, FPGA-accelerated hardware
emulation platform hosted in the public cloud, attempts to accessibly offer the best of both
worlds. This article highlights two new FireSim capabilities that help realize this goal: multi-cycle
resource optimizations, which can enable an eight-fold increase emulated core count, and
FPGA-agnostic support for multi-clock systems. These supplement existing FireSim features
which provide a foundation for productive emulation, including a cloud manager to automatically

scale out experiments and a rich debug toolkit.

B WHILE much can be said about the state of
Moore’s law, one unambiguous truth about chip
design is that it remains expensive to build the
first chip. Worse still, the drivers of this non-
recurring engineering (NRE) cost are diverse—
there appears to be no panacea for making chips
cheap. However, with the explosion of new ap-
plications in the domains of artificial intelligence
and the internet of things, specifically in energy-
constrained environments, the need for custom
silicon has never been greater.

IEEE Micro

Published by the IEEE Computer Society

One large driver of NRE cost, specifically of
pre-silicon verification, validation, and software-
development costs, is that of full-system simu-
lation. With software-based simulation often be-
ing too slow or too inaccurate, SoC designers
turn to hardware acceleration in the form of
FPGA prototypes and hardware emulation. These
technologies faithfully represent the chip while
still executing quickly enough to run complete
system stacks and applications. Of the two, FPGA
prototypes tend to be faster and less expensive

© 2021 IEEE

Department Head

and therefore see extensive use in software de-
velopment. Given its low barrier to entry, most
academic SoC frameworks rely on FPGA proto-
typing for full-system evaluation [1], [2]; how-
ever, capacity constraints and limited debugging
can slow design iteration in architecture research.
Conversely, hardware emulators can be deter-
ministic (when used as simulation accelerator)
and provide a debuggable simulation environment
akin to a very fast register-transfer level (RTL) or
gate-level simulator, rendering them critical for
pre-silicon verification.

Providing a hardware-accelerated, software-
simulator-like emulation experience is no small
undertaking for a number of reasons [3]:

e The scale of modern SoCs typically requires
multi-chip systems to emulate, with clev-
erly designed intra-emulator interconnect to
achieve good simulation performance.

e Mapping the chip to parallel emulator hard-
ware is a fundamentally more difficult task
than compiling software simulators, leading to
long compile times.

e Chip primitives may not map cleanly to emu-
lation hardware and may need to be substituted
with emulation equivalents.

e Providing software-like debug features re-
quires additional hardware support and tooling.

To meet these challenges, commercial hard-
ware emulators use ASICs (e.g., Cadence Pal-
ladium), custom FPGAs (e.g., Mentor Veloce),
or custom integration of commercial off-the-shelf
(COTS) FPGAs (e.g., Synopsys ZeBu). To map
user designs to customized hardware, vendors
provide specialized compilers and broad suites of
emulation IP libraries. While these extensive ca-
pabilities come at high cost, the unique feature-set
delivered by commercial emulators makes them
invaluable for increasingly expensive commercial
SoC projects. Unfortunately, the cost of hardware
emulation puts it out of reach for smaller compa-
nies and academics, and limits the scalability of
its use at larger companies, where engineers must
schedule time on limited emulation hardware.

With FireSim [4] (https://fires.im), we aim
to democratize access to hardware emulation.
First, we avoid the use of custom hardware in
favor of single-instance, COTS FPGAs in the
public cloud. Second, we have made FireSim’s

software ecosystem, which includes a compiler,
emulation models, and an FPGA cluster man-
ager, completely open-source. While FireSim was
originally developed for simulating warehouse-
scale computers by cycle-accurately networking
together emulators across hundreds of FPGAs,
here we expand on two new FireSim develop-
ments in service of making the underlying single-
FPGA emulation technology more capable. First,
to fit larger designs on a single FPGA without
partitioning, we’ve introduced FPGA resource
optimizations, notably instance multi-threading.
Second, to enable rapid design space exploration
of more realistic SoC clock organizations, we’ve
introduced support for simulation of arbitrar-
ily many fixed-frequency clocks. These capabili-
ties, supplemented with FireSim’s automation for
managing emulator compilation and execution in
the public cloud, and its extensive debug toolset,
greatly expand the accessibility of hardware em-
ulation.

A Primer on FireSim

Hardware emulation is typically deployed in
one of two modes: in-circuit emulation replaces
the SoC with an emulator and speed adapters
to debug an application driving real-world 1/O,
whereas transaction-based emulation leverages
the emulator as an accelerator for a deterministic,
closed-world simulation. FireSim is designed for
this second mode. It takes an input design, the
target, and maps it to a hardware-accelerated
platform, the host, to build an emulator that
cycle-accurately represents the source. Like other
emulation platforms, FireSim emulators are co-
hosted: a CPU-hosted driver process interacts
with a PCle-attached, FPGA-hosted component.
In order to support deterministic emulations, ease
implementation over large FPGAs, and enable
specialized resource optimizations, FireSim em-
ulators are implemented as latency-insensitive
bounded dataflow networks (LI-BDN) [5]. These
networks consist of latency-insensitive models,
the nodes of the graph, which communicate by
exchanging fokens, messages that represent the
value on a wire on a given cycle. Models can
be hosted on the CPU or on the FPGA. FPGA-
hosted models can be handwritten, emulation-
only blocks or transformed from the target design.
We depict a typical input system and its equiva-

IEEE Micro

https://fires.im

Input SoC
Chip Boundary
 —
[Coreo Core 1 Core 2 Core3 |3
: o
' Reg Reg Reg Reg s}
(B EE [e1f3
: B
} 3 3
:
:

System Bus | i

| Periphery Bus |§
1 | i
= o et i Block !

]
i i Devi UART
! | Memory Bus |H evice TX/RX
! T it | Controller
i 0"
] 0" I |
. i
i DRAM Timing Model [~ 1 :
i i
: i | Block UART
| i Device
! DRAM Domain i
target.fir (Firrtl File)
Optimization Annotations Bridge Annotations
RAMOptAnnotation(core@.rf), BridgeAnnotation(
aee target = blockdev,
MultithreadingAnnotation(cored), bridgeClass = BlockDeviceBridge),
target.anno.json (Annotations File)
LI-BDN Representation ‘

Register Tiles 0-3

Files Multithreaded
Multi-Cycle

Clock
Bridge

Hub Model

Unoptimized

Model Types
O Software o Transformed RTL O Emulation-Only RTL

Figure 1. A example chip specification (top), and
resulting LI-BDN after Golden Gate compilation (bot-
tom). In FireSim, these networks always have a star
topology: bridges and optimized models communi-
cate directly with an unoptimized hub model (the re-
maining design after optimizable modules have been
extracted).

lent LI-BDN representation in Figure 1.
FireSim’s compiler, Golden Gate [6], is re-
sponsible for translating the target into an LI-
BDN, performing optimizations on nodes of the
network, and synthesizing auxiliary emulation in-
frastructure including debugging utilities. Golden
Gate accepts input designs expressed in FIR-
RTL [7], an open intermediate representation for

July/August 2021

RTL circuits. These inputs include a description
of the circuit and a set of annotations, which call
out optimization opportunities (e.g, by labelling
a multi-ported RAM in the IR) and identify
modules that should be replaced with emulation-
specific IP (referred to as bridges). FIRRTL is
emitted natively by Chisel, a Scala-based HDL,
but flows to translate other HDLs and hardware
IRs to FIRRTL exist and could be used instead.

Golden Gate compilation proceeds in three
phases. In Target Transformation, the design’s
module hierarchy is mutated to remove bridges
and extract optimization candidates. In Simulator
Synthesis, the design is first translated into a base-
line LI-BDN, after which optimizations are then
implemented as modular refinements on nodes
of the network. In Platform Mapping, bridges,
including hardware interfaces for software-hosted
models, are synthesized and connected to host
resources, such as off-chip memory. At this point,
Golden Gate emits Verilog compatible with a
host-FPGA shell project and a C++ header that
describes the organization of the FPGA-hosted
piece of the emulator and is linked into the driver
process.

FireSim has been optimized to run on Ama-
zon Web Services (AWS) EC2, with emula-
tions hosted on EC2’s F1 instances that fea-
ture Intel Xeon CPUs with PCle-attached Xil-
inx VU9P FPGAs. FireSim provides a manager
utility, which dynamically launches instances to
parallelize compilation and emulation jobs (as
described in Cloud Accessibility).

FireSim is integrated into the Chipyard SoC
design framework [8], which contains a large
corpus of SoC IP developed by a growing com-
munity of designers, including RISC-V processor
cores, cache generators, hardware accelerators,
and periphery IP. Chipyard SoC generators are
written in Chisel, which makes it easy to elabo-
rate many different SoC configurations across a
large design space. As we will show, this dove-
tails with FireSim’s ability to rapidly evaluate
many designs in parallel using the public cloud.

The performance of a FireSim emulator varies
as a function of the target SoC and its simulated
behavior. FireSim emulators use a single emula-
tion clock which, on a Xilinx VU9P, closes timing
between 30 and 190 MHz. However, models may
dynamically take more than one cycle to execute,

Department Head

leading to runtime fluctuations in performance.
This is quantified by the FPGA-to-Model-Cycles
Ratio (FMR) [9]: the average number of FPGA
cycles used to simulate a clock cycle. For un-
optimized emulators of typical Chipyard SoCs,
FMR tends to range between 1.0 and 1.5. For
a particular run, dividing the FPGA frequency
by FMR gives the effective emulation frequency,
Sfemut> Of the target. As we will discuss, resource
optimizations radically improve emulation capac-
ity at the expense of FMR.

Resource Efficiency

With the increasing size and complexity of
modern SoCs, the finite capacity of existing
FPGA platforms has long been a significant hur-
dle to productive simulation. In contrast with
software RTL simulators and processor-based em-
ulation platforms like Palladium, FPGAs are gen-
erally constrained by the need to directly target
design RTL specifications to FPGA implementa-
tions directly and at a fine granularity. This ap-
proach can result in simulators that require more
resources than are provided by even an advanced,
high-end FPGA device for moderately sized tar-
get systems. While this limitation is often ad-
dressed by partitioning simulators across multiple
FPGA dies using either general-purpose FPGA
EDA tools or specialized emulators’ software
flows, we incorporate an alternative approach that
reflects common root causes of excessive resource
utilization:

e Some microarchitectural primitives common in
ASIC design map poorly to FPGAs, such as
complex RAMs and CAMs [10].

e Increased parallelism in target systems often
implies numerous instances of identical blocks,
each consuming distinct emulator resources.

Notable examples of poorly mapped structures in
ASIC RTL include register files in superscalar
cores and reordering structures. While the under-
lying highly ported memories may be efficiently
realized in ASICs with library IP, their RTL speci-
fications cannot efficiently exploit FPGA memory
structures and therefore consume significant logic
resources. To avoid this bottleneck, the Golden
Gate compiler may automatically optimize a sim-
ulator to dedicate fewer resources to modeling
such FPGA-hostile memories by identifying each

instance in the hierarchy, denoting it as a logical
partition of the target, and mapping this parti-
tion to a multi-cycle decoupled model [6]. This
model implements a cycle-exact simulation of
the target memory in the LI-BDN protocol via
efficient, serialized accesses to underlying two-
port block RAMs. Since the Golden Gate com-
piler is capable of transforming arbitrary FIRRTL
circuits, regardless of their application domain,
this optimization can be universally applied to
any FIRRTL input by labeling any FPGA-hostile
memories with annotations resembling compiler
directives in other languages. While the introduc-
tion of multi-cycle models may increase FMR
and reduce throughput, it can significantly reduce
the resources required to simulate targets with
complex memories, allowing larger designs to fit
on existing FPGAs.

Building upon this first optimization, we fur-
ther exploit the use of multi-cycle models to
reduce the resource footprint needed to simulate
a ubiquitous feature of modern, highly parallel
SoCs: sets of identical instances. Drawing inspira-
tion from software simulators and specialized em-
ulators, where common code may be repeatedly
executed to model an arbitrary number of copies
of a given block, we introduce threaded models
to FireSim, where a single LI-BDN model amor-
tizes the cost of a module’s logic over multiple
simulated instances, each an independent thread
of simulation. As with the preceding memory
optimization, this transformation can be applied
to any FIRRTL circuit by merely listing the target
set of instances in a compiler directive. However,
rather than just specific memory ports, the thread-
ing optimization can broadly “de-duplicate” all
logic resources used across a set of instances,
including both lookup tables (LUTs) and digital
signal processing (DSP) blocks. Though instance
threading does not intrinsically reduce the number
of state bits required to simulate the full set
of instances—and indeed it carries the overhead
of selecting the correct state and I/O for the
active instance—it can even help reduce pres-
sure on FPGA RAM resources by packing N
copies of a target memory that was previously
too shallow to efficiently exploit inflexible block
RAM primitives. While this technique has been
painstakingly implemented by hand in previous

IEEE Micro

Large Large Large Large Other
Core 0| |Core 1| |Core 2| |Core 3| | Block

i i i i ;

[On-Chip Interconnect]

(Target Transformation]

Threadable set of instances

Core 0| |Core 1| |Core 2| |Core 3
P S A ... R,

E Large Large Large Large

Other
Block

(On-Chip Interconnect]

[Simulator Synthesis & Threading Optimization }

R R - T T

Threaded Model

Expensive

Core Logic
4
Scheduler

HE HE FE HE
i e e

‘ LI-BDN Model: Remainder of Target Chip ‘

Figure 2. Optimizing a emulator of a four-core target
system with instance threading. Rather than mapping
each target core to its own costly FPGA implementa-
tion, the full set of identical instances is simulated with
a threaded model. Each cycle, this model schedules
a thread of execution corresponding with a particular
instance on a single copy of the underlying logic,
saving FPGA resources.

handwritten microarchitectural simulators [11],
[12], the Golden Gate compiler is the first tool
to automatically translate repeated instances in
RTL designs to emulators incorporating threaded
models, as shown in Figure 2.

As with multi-cycle memory models, the un-
derlying serialization of instance threads reduces
emulation throughput; however, the latency-
hiding benefits of threaded schedules can reduce
the relative overhead of introducing further opti-
mizations or co-simulated software models. Taken

July/August 2021

in combination, these two optimizations can dra-
matically reduce the resource footprint of FPGA-
based emulators by trading off space for through-
put. By exposing these automated transformations
through simple flags, Golden Gate provides a
user-friendly mechanism to avoid “cliffs” in de-
vice capacity.

To demonstrate this capability, we explore
how Golden Gate optimizations can increase
the effective capacity of commodity AWS-hosted
FPGAs to allow emulating larger multi-core
SoCs. In particular, we evaluate emulators of two
Chipyard-based systems:

e A general-purpose SoC incorporating varying
numbers of five-issue configurations of the
open-source BOOM out-of-order processor.

o A domain-specific accelerator with multiple
tiles, each pairing an in-order Rocket RISC-
V control processor with a linear algebra co-
processor based on an 8x8 systolic array of
bfloat16 processing elements (PEs).

Figure 3 shows the number of FPGA resources
used to implement varying core counts—either
BOOM cores or systolic array accelerator cores—
both with and without the two Golden Gate
resource optimizations enabled. Using standard
FPGA mapping techniques an AWS-hosted Xil-
inx VU9P FPGA can fit only a two-core BOOM
target or a single accelerator instance; higher core
counts of each design require more LUTSs than are
available in the host VU9P FPGA, rendering them
infeasible to implement even before placement
or routing. However, applying both optimizations
extends the simulation capacity to sixteen BOOM
cores or eight accelerator cores; not only do
these large, optimized simulators with instance
threading and multi-cycle models reduce LUT
utilization to a feasible amount, but they success-
fully close timing at SOMHz for all but the eight-
core accelerator target, which runs at 35MHz.
While adding resource threading has some small
overhead that causes LUT utilization to grow
nominally as core count increases, it is interesting
to note that the eight-core, threaded simulation of
the multi-accelerator system uses the exact same
number of FPGA DSP block resources (594 in
total) as an unoptimized simulator of a single
accelerator. Finally, even though the threading
optimization does not intrinsically reduce the the-

Department Head

oretical memory footprint of multi-core designs,
the ability to better pack target memories into
fixed-size primitives reduces BRAM utilization in
optimized BOOM simulators.

This resource-efficiency advantage does come
at a tradeoff in simulation speed; while the
unoptimized simulators all run at an observed
FMR of 1.62 FPGA cycles per emulated cycle,
the serialization imposed by sharing sets of re-
sources across larger targets further slows the
optimized simulators. The optimized simulators
range in performance based on both the number
of threaded instances and the presence of com-
binational paths connecting optimized models;
while it takes an average of only eight FPGA
cycles (a net simulation rate of 4.38MHz) to
simulate a cycle of the eight-accelerator system,
the extra serialization of complex BOOM register
files requires 32 cycles to simulate a cycle of
the 16-core BOOM system, yielding an overall
throughput of 1.56MHz for the slowest simulator
configuration. However, this tradeoff is ultimately
balanced by the ability to accessibly simulate
target designs that were previously impossible to
map to a single FPGA without the expense or
extreme slowdown of previous techniques such
as partitioning. Furthermore, as an orthogonal
dimension to partitioning, the ability to increase
the simulation capacity of each individual FPGA
carries the potential to benefit both single- and
multi-FPGA platforms.

Cloud Accessibility

Traditionally, the complexity of FPGA plat-
form bringup and management has hampered
broader adoption of FPGA-based simulation
tools, especially outside of large commercial
users. However, the introduction of FPGAs in the
public cloud in 2017 (with Amazon Web Ser-
vices’” EC2 F1 instances) drastically improved the
practicality of managing and deploying FPGAs
at scale, even for small organizations. This scal-
ability was critical in enabling FireSim’s original
purpose of simulating warehouse-scale machines
from the ground-up [4].

To productively harness the capabilities of
cloud FPGA platforms, FireSim includes the
manager, a tool that orchestrates the deploy-
ment of emulations across clusters of FPGA-
accelerated compute instances (Run Farms) and

emulator builds (i.e., FPGA synthesis/P&R)
across clusters of standard compute instances
(Build Farms).

Most FireSim users interact with only the
manager instance. Configuring a simulation run
requires only specifying parameters of the simula-
tion in a set of . ini configuration files and run-
ning a sequence of three firesim commands:
launchrunfarm, which creates instances of
the requested type; infrasetup, which copies
all emulation collateral to these instances; and
runworkload, which launches emulations and
copies all remote results back to the manager
instance for analysis. Similarly, to run parallel
builds, users need only specify a list of con-
figurations to the manager. The user then runs
the buildafi command, which automatically
launches build instances, completes the entire
build process, tears down the instances, and fi-
nally reports the AWS identifiers of the final
bitstreams.

Flexible Multi-clock Emulation

The enormous scale of modern chips not
only demands large emulation capacity but begets
complex clocking organizations that can be chal-
lenging to map onto an emulator. As an interim
step towards emulating these directly, FireSim
allows the user to simulate a user-defined set of
fixed-frequency clocks. To do so, users instan-
tiate a single clock bridge in their design from
which they source clocks for their system. Clock-
domain crossing (CDC) circuitry, assuming it is
FPGA synthesizable, may be left unchanged. The
clock bridge generates an infinite stream of clock
tokens: each token encodes which clocks have an
edge in a given timestep.

Multi-clock designs still use a single emula-
tion clock: multiple target clocks are emulated by
independently clock-gating the emulation clock
for each target domain based on the current clock
token. To maintain compatibility with FireSim
debug features and optimizations, all extracted
satellite models remain synchronous to a single
clock, and thus, are conventional primitive LI-
BDNs. Only the hub model, which is never
subject to optimizations, implements multi-clock
emulation semantics. In the hub, a clock token is
processed over a two-stage control pipeline. In the
first stage, clock edges are launched and output

IEEE Micro

400% LUTs 100%

-e-Baseline
©&-Optimized

10, |-
300% 80%
60% |
200%)
a0% |
VU9P Limit

100% 20%

VU9P Resource Utilization (%)

0% 0%

Block RAMs

100% DSP Blocks
80%
60%
40%

20%

O%M

0 2 4 6 8 10 12 14 16 0o 2 4
Large BOOM Cores

400% LUTs 100%

V-O-Baseline
-Optimized

80%

300%
200%

0/ | Ty R T LRy
100% N L 20%

VU9P Resource Utilization (%)

0% 0%

Large BOOM Cores

Block RAMs

60% 60%
40% / 40%
VUS9P Limit o

8 10 12 14 16 0 2 4 6 8 10 12 14 16
Large BOOM Cores

100%

DSP Blocks

80%

20%

0%

Accelerators

Accelerators

4 6 8 0 2 4 6 8
Accelerators

Figure 3. A comparison of the number of FPGA lookup table (LUT), block RAM (BRAM), and digital signal
processing (DSP) block resources required to implement emulators of Chipyard-based target designs with
varying numbers of identical instances of coherent cores. Each core of the Large BOOM is a five-issue
configuration of the BOOM RISC-V out-of-order core, while each instance of the Accelerator core combines
an in-order Rocket RISC-V control processor with an 8x8 systolic array coprocessor to target linear algebra
on bfloat16 data. Implementation results results were obtained using Vivado 2018.3 for both a Baseline
unoptimized simulator configuration and an Optimized flow with both multi-cycle memory models and instance
threading. The red dotted line depicts the number of LUTs available in the Xilinx VU9P devices hosted in AWS
F1 instances. Together, the two optimizations extend simulation capacity from two large BOOM cores to sixteen

and from one accelerator instance to eight.

FSMs in the launching domains are reset; then
in the second stage, multi-model combinational
paths, if they exist, are allowed to resolve. Un-
der this implementation, if all simulated clocks
are integer divisions of the fastest clock in the
system, the fastest clock in the system can be
emulated with unity FMR. On a Xilinx VU9P
FPGA and the AWS-provided shell project, our
current implementation, which uses global clock
buffers to implement clock gating, scales reliably
to twelve target clocks before running into place-
ment challenges. In the future, we plan to expand
this by using finer grained clock-gating schemes
for smaller target clock domains and more relaxed
clock placement and timing constraints.

This flexible approach hides any FPGA-
specific handling of multiple clocks from the user
and, in modern FPGAs, is scalable to systems
with many clocks. Combined with FireSim’s au-
tomation, this makes it easy to explore perfor-
mance tradeoffs between different clock domain

July/August 2021

organizations. To illustrate this, we evaluated the
SPECspeed 2017 integer on three different RISC-
V chip configurations (illustrated in the block
diagram at the top of Figure 1): a completely
synchronous system running at 1.5 GHz (Syn-
chronous), a two-domain system (Two Domains)
with a DDR3 memory system running at 1.0 GHz
behind an asynchronous crossing, and a three-
domain system (Three Domains), in which we
introduce a rational crossing between the proces-
sor cores and the uncore (running at 1.5 GHz and
750 MHz, respectively). All three systems consist
of four Rocket in-order cores with 16 KiB L1
instruction and data caches and a shared 256 KiB
L2 cache. To rapidly obtain these results, we ran
each benchmark in the suite in parallel (requiring
11 emulators since we split 625.xz’s inputs in
two to halve its runtime), on each configuration
in parallel, using a total of 33 emulators.

The runtime of the simplified clock orga-
nizations relative to the three-domain configu-

Department Head

1
0.9
0.8
0.7
0.6
0.5
0.4
03
0.2
0.1

0

Normalized Runtime of SPECspeed 2017 Integer

9 o ° o o
S
7 7 R

B Three Domains
Two Domains

Synchronous

o
& &R > & 42 &
<~ &R) & A N
e 9 & O + N OGS) o
&S &P L S
& o° +@\ O % Q4
& @ & 4

Figure 4. SPECspeed 2017 runtime of simplified
clock organizations: a completely synchronous de-
sign (Synchronous) and one with just the DRAM in a
separate domain (Two Domains), normalized against
a realistic one (Three Domains).

Design Run Time (h) femw (MHz)
Three Domain 44.2 81.0
Two Domain 36.4 80.7
Synchronous 28.0 104.5

Table 1. Emulation performance summary of the three
SoC configurations running SPECspeed.

ration (Figure 4) precisely reveals the perfor-
mance costs of introducing more clock domains.
Applications whose working set does not fit in
L1 cache see a large slowdown when a core-
to-uncore crossing exists. Similarly, those whose
working set does not fit in the L2 cache, notably
605.mcf_s, see another, generally smaller,
performance penalty when an uncore-to-DRAM
crossing is present. Crucially, FireSim let us
collect these results quickly: Table 1 reports
femw of the core clock and the wall-clock time
of the longest-running benchmark. While these
emulators close timing at 110 MHz, emulation
performance falls to approximately 80 MHz in
the multi-clock designs because the DRAM con-
troller clock frequency (1 GHz) is not an integer
division of the core clock frequency (1.5 GHz).
As a result, the core clock can only fire in three
of every four emulator time steps, since one time
step is spent launching a DRAM domain clock
edge when there is no concurrent core clock edge.
This bounds the best-case fe,u to 82.5 MHz.
Nonetheless, this is still sufficiently fast such that,
when combined with the parallelism of using
emulation in the cloud, and the ease of mapping
different clock domain organizations to an em-
ulator, FireSim enables rapid and precise design

space exploration of SoC clock organizations.

Debugging and Visibility

One of the main differentiators between hard-
ware emulators and FPGA prototypes is the var-
ious debugging and visibility features afforded
to the user. In FPGA prototypes, users typi-
cally rely on vendor-provided in-circuit debug-
ging blocks, such as Xilinx’s integrated logic
analyzers (ILA). Unfortunately, limitations on the
number of recorded signals, finite buffer size,
and non-determinism at the FPGA I/O boundary
significantly increase debugging effort. In con-
trast, custom hardware emulators often provide
complete, reproducible waveform visibility, print
statements, and assertions over the entire design.
To bridge this gap, FireSim’s debugging features
bring several emulator-like debugging capabilities
to commodity FPGAs.

As with FPGA prototyping tools, FireSim
provides compiler directives to automate ILA
integration for traditional in-circuit waveform
debugging. However, FireSim also provides in-
terfaces to synthesize target-design printf and
assertion statements through compiler directives
labeling either individual constructs or entire
modules. These features, originally introduced in
DESSERT [13], provide FireSim with debugging
visibility closer to software RTL simulation, en-
abling a simulation to halt on assertion failures,
or to print a specific signal value upon selected
events. These features support traditional, user-
friendly techniques like “printf debugging” or
invariant checks.

Finally, FireSim provides a collection of
system-level debugging features, collectively
named FirePerf [14]. These include instruction
trace generation and visualization as well as out-
of-band performance counter generation. These
features can be customized to generate output
only for particular windows of execution speci-
fied by a simulation trigger that may incorporate
both cycle count and values of target-specific
signals like program counters. These features
enable system-level analysis of specific regions
of interest in long-running emulations.

Together, these debugging features enable the
identification and resolution of hardware bugs
trillions of cycles into emulation time with both
convenience and determinism. FireSim’s debug-

IEEE Micro

ging capabilities provide an accessible and af-
fordable middle ground between fast but low-
visibility FPGA prototypes and slow but highly
introspective software RTL simulation.

Conclusion

With its use of FPGAs in the public cloud,
open-source toolchain, and unique combination of
features, such as multi-cycle resource optimiza-
tions, FireSim expands accessibility to hardware
emulation capabilities to a broader audience of
chip designers. The FireSim community is work-
ing towards further improving this accessibility
by adding new features such as support for local
FPGAs, detailed emulation of targets that dynam-
ically scale frequencies, integration of a Verilog-
to-FIRRTL flow to make it possible to optimize
currently blackboxed Verilog modules, and state
snapshotting and replay for full visibility debug-
ging. These features will further drive FireSim
adoption and help put hardware emulation in the
hands of users for whom it was previously out of
reach.

Acknowledgments

The information, data, or work presented
herein was funded in part by the Defense
Advanced Research Projects Agency (DARPA)
through the Circuit Realization at Faster
Timescales (CRAFT) Program under Grant
HRO011-16-C0052, and by the Advanced
Research Projects Agency-Energy (ARPA-E),
U.S. Department of Energy, under Award
Number DE-AR0000849. Research was partially
funded by ADEPT Lab industrial sponsors and
affiliates. The views and opinions of authors
expressed herein do not necessarily state or
reflect those of the United States Government or
any agency thereof.

B REFERENCES

1. P. Mantovani, D. Giri, G. D. Guglielmo et al., “Ag-
ile soc development with open ESP : Invited paper,’
in IEEE/ACM International Conference On Computer
Aided Design, ICCAD 2020, San Diego, CA, USA,
November 2-5, 2020. |EEE, 2020, pp. 96:1-96:9.

2. J. Balkind, M. McKeown, Y. Fu et al., “OpenPiton: An
open source manycore research framework,” in Pro-
ceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages

July/August 2021

10.

11.

12.

and Operating Systems, ser. ASPLOS '16. New York,
NY, USA: ACM, 2016, pp. 217-232.

W. N. Hung and R. Sun, “Challenges in large fpga-
based logic emulation systems,” in Proceedings of the
2018 International Symposium on Physical Design, ser.
ISPD ’'18. New York, NY, USA: Association for Com-
puting Machinery, 2018, p. 26-33.

S. Karandikar, H. Mao, D. Kim et al., “FireSim: FPGA-
accelerated cycle-exact scale-out system simulation in
the public cloud,” in 2018 ACM/IEEE 45th Annual Inter-
national Symposium on Computer Architecture (ISCA),
June 2018, pp. 29-42.

M. Vijayaraghavan and A. Arvind, “Bounded dataflow
networks and latency-insensitive circuits,” in Proceed-
ings of the 7th IEEE/ACM International Conference on
Formal Methods and Models for Codesign, ser. MEM-
OCODE’09. IEEE Press, 2009, p. 171-180.

A. Magyar, D. Biancolin, J. Koenig et al., “Golden gate:
Bridging the resource-efficiency gap between asics and
fpga prototypes,” in 2019 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD), 2019, pp.
1-8.

A. Izraelevitz, J. Koenig, P. Li et al., “Reusability is FIR-
RTL ground: Hardware construction languages, com-
piler frameworks, and transformations,” in Proceedings
of the 36th International Conference on Computer-
Aided Design, ser. ICCAD ’17. Piscataway, NJ, USA:
IEEE Press, 2017, pp. 209-216.

. A. Amid, D. Biancolin, A. Gonzalez et al., “Chipyard: In-

tegrated design, simulation, and implementation frame-
work for custom socs,” IEEE Micro, vol. 40, no. 4, pp.
10-21, 2020.

M. Pellauer, M. Vijayaraghavan, M. Adler et al., “A-
port networks: Preserving the timed behavior of syn-
chronous systems for modeling on fpgas,” ACM Trans.
Reconfigurable Technol. Syst., vol. 2, no. 3, Sep. 2009.
H. Wong, V. Betz, and J. Rose, “Comparing fpga vs.
custom cmos and the impact on processor microar-
chitecture,” in Proceedings of the 19th ACM/SIGDA
International Symposium on Field Programmable Gate
Arrays, ser. FPGA’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 5-14.

M. Pellauer, M. Adler, M. Kinsy et al., “Hasim: Fpga-
based high-detail multicore simulation using time-
division multiplexing,” in 2011 IEEE 17th International
Symposium on High Performance Computer Architec-
IEEE, 2011, pp. 406—417.

Z. Tan, A. Waterman, H. Cook et al., “A case for fame:

ture.

Fpga architecture model execution,” in Proceedings of

10

Department Head

the 37th annual international symposium on Computer
architecture, 2010, pp. 290-301.

13. D. Kim, C. Celio, S. Karandikar et al., “DESSERT:
Debugging rtl effectively with state snapshotting for
error replays across ftrillions of cycles,” in 2018 28th
International Conference on Field Programmable Logic
and Applications (FPL), 2018, pp. 76—764.

14. S. Karandikar, A. Ou, A. Amid et al., “FirePerf:
FPGA-accelerated full-system hardware/software per-
formance profiing and co-design,” in Proceedings
of the Twenty-Fifth
Architectural Support for Programming Languages

ASPLOS ’20.

New York, NY, USA: Association for Computing

Machinery, 2020, p. 715-731. [Online]. Available:

https://doi.org/10.1145/3373376.3378455

International Conference on

and Operating Systems, ser.

David Biancolin is currently a PhD candidate in
the Department of Electrical Engineering and Com-
puter Sciences, University of California, Berkeley.
His dissertation work studies FPGA-based, discrete-
event simulation techniques for SoCs with dynami-
cally scaling clocks. He has a BASc in Engineering
Science from the University of Toronto. Contact him
at biancolin@berkeley.edu.

Albert Magyar is currently a PhD candidate in the
ADEPT Lab at the University of California Berke-
ley. His research interests include increasing pro-
ductivity of RTL design and improving the usabil-
ity of FPGA simulation. He has a BS in Nuclear
Engineering and a BA in Computer Science from
the University of California, Berkeley. Contact him at
albert.magyar@berkeley.edu.

Sagar Karandikar is currently a PhD student in the
Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley. His re-
search focuses on exploring hardware-software co-
design in warehouse-scale machines. He has a BS
and an MS in Electrical Engineering and Computer
Science from the University of California, Berkeley.
He is a member of the the Association for Comput-
ing Machinery (ACM) and the IEEE. Contact him at
sagark@eecs.berkeley.edu.

Alon Amid is currently a PhD candidate in the
Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley. His cur-
rent research focus includes parallel and distributed
computing, energy-efficient processors and architec-
tures, and hardware-software co-design. He has a
B.Sc in electrical engineering from Technion - Is-

rael Institute of Technology, and an M.S. from the
University of California, Berkeley. Contact him at
alonamid@berkeley.edu.

Borivoje Nikoli¢ is the National Semiconductor Dis-
tinguished Professor of Engineering at the University
of California, Berkeley. He has a PhD in electrical and
computer engineering from the University of Califor-
nia, Davis. He is a Fellow of the IEEE. Contact him at
bora@eecs.berkeley.edu.

Jonathan Bachrach is currently an adjunct assis-
tant professor in the Department of Electrical Engi-
neering and Computer Sciences at the University of
California, Berkeley. He has a PhD in computer sci-
ence from the University of Massachusetts, Amherst.
Contact him at jrb@berkeley.edu.

Krste Asanovi¢ is currently a professor in the
Department of Electrical Engineering and Computer
Sciences at the University of California, Berkeley. He
has a PhD in computer science from the University
of California, Berkeley. He is a Fellow of the IEEE
and the Association for Computing Machinery (ACM).
Contact him at krste@berkeley.edu.

IEEE Micro

https://doi.org/10.1145/3373376.3378455

	A Primer on FireSim
	Resource Efficiency
	Cloud Accessibility
	Flexible Multi-clock Emulation
	Debugging and Visibility
	Conclusion
	Acknowledgments
	REFERENCES
	Biographies
	David Biancolin
	Albert Magyar
	Sagar Karandikar
	Alon Amid
	Borivoje Nikolic
	Jonathan Bachrach
	Krste Asanovic

