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Abstract—Reproducibility in the sciences is critical to reliable
inquiry, but is often easier said than done. In the computer
architecture community, research may require modifying sys-
tems from low-level circuits to operating systems and high-
level applications. All of these moving parts make reproducible
experiments on full-stack systems challenging to design. Fur-
thermore, the computing ecosystem evolves quickly, leading to
rapidly obsolete artifacts. This is especially true in the realm of
software where applications are often updated on a monthly, or
even daily, cadence. In this paper we introduce FireMarshal, a
software workload management tool for RISC-V based full-stack
hardware development and research. FireMarshal automates
workload generation (constructing boot binaries and filesystem
images), development (with functional simulation), and evaluation
(with cycle-exact RTL simulation). It also ensures, to the extent
possible, that the exact same software runs deterministically
across all phases of development, providing confidence in cor-
rectness and accuracy while minimizing time spent on slow and
expensive RTL-level simulation. To ease workload specification,
FireMarshal provides sane defaults for common components like
firmware and operating systems, freeing users to focus only
on project-specific components. Beyond reproducibility, Fire-
Marshal enables continued development of workloads through
the use of inheritance, where new workloads can be derived
from established and continually updated base workloads. Users
communicate their designs through the use of simple JSON
configuration files that can be easily version controlled, reused,
and shared. In this paper, we describe the design of FireMarshal
along with the associated software management methodology for
architectural research and development.

I. INTRODUCTION

The computer science community, like other scientific do-
mains, is facing a reproducibility crisis [1]–[5]. To quote
Krishnamurthi and Vitek: “Science advances faster when we
can build on existing results, and when new ideas can easily
be measured against the state of the art” [3]. However,
reproducibility can be a challenging goal to achieve. Research
artifacts are often difficult to (re)produce and use, requiring
specialized knowledge only possessed by the authors [1]. In
this paper, we focus on one such class of artifacts: software
workloads for full-stack system-on-chip (SoC) research. That
is, the software artifacts intended to be run on an experi-
mental hardware system. RISC-V, coupled with open-source
SoC development frameworks like OpenPiton, BlackParrot,
ESP, and Chipyard, has enabled increasingly complex and
capable designs [6]–[9]. Likewise, our ability to simulate
complex RISC-V based SoCs has grown rapidly in recent years
with new simulators like FireSim, Sniper, and gem5/RISC-
V [10]–[12]. Together, these advances have greatly increased
the complexity of software that can be reasonably used for

evaluation. A working software stack needs to track the exact
version of various hardware interfaces (serial ports, reset
logic, peripherals, etc.), with software functionality from the
firmware up to user-level applications. This increased com-
plexity and velocity presents challenges to the management of
software workloads for experimentation and research. Firstly,
we must be able to rebuild and re-run our own experiments in a
consistent way (repeatability). Second, we must communicate
our experiments in a way that allows the community to
evaluate and compare them (reproducibility). Furthermore, we
would like to avoid duplication of effort within the community
by reusing workloads, even as software and hardware evolve
(benefaction)1. To achieve these goals, we present FireMar-
shal, a software workload management system to wrangle this
complexity by allowing users to describe and share workloads
in an unambiguous human and machine readable form that
can be stored, version controlled, and shared.
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Fig. 1: Full-stack hardware development components. Soft-
ware typically interacts with the hardware through an ISA for
the CPU core and MMIO or ISA extensions for accelerators
and platform devices. A hardware research project may need
to change a few components of this stack, but is unlikely to
change all components.

A. Background

1) SoC Development Frameworks: There are now a number
of open-source designs for full-stack RISC-V based SoCs [6]–
[9]. By “full-stack”, we mean that these designs include
RTL implementations of processors which support the RISC-
V privileged specification [14] and can boot full operating
system kernels such as Linux with support for a broad range

1The terms “repeatability” and “reproducibility” are used as defined by the
ACM [13] while the term “benefaction” is derived from the work of Collberg
and Proebsting [1].
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of applications. Together with additional RTL platform-level
components, these frameworks enables the design of complete
RTL SoC implementations at fabrication quality. Figure 1
depicts the typical components included in such a system.
Open-source SoC development frameworks often provide a
baseline hardware implementation and allow users to modify
or add components in order to customize the SoC for a
particular use-case. Evaluating such a system often requires
a fully functioning software stack from firmware all the way
up to user-space applications.

2) Software Stacks: Generating and maintaining a working
software stack is challenging. The firmware and kernel require
careful configuration to support the underlying hardware plat-
form, and specific versions are often required. In addition to
the initial boot binary, a full-featured OS will also require
a disk image to provide the user-space environment. This is
usually provided by an operating system distribution like De-
bian [15], Fedora [16], or custom tailored distributions which
can be generated using frameworks such as Buildroot [17].
We refer to the combination of boot-binary and disk image
as the “software workload”. A change in any part of this
stack may require changes to others. For example, an updated
platform device (e.g. a network interface) may require a new
software driver, or a change to the CPU boot configuration may
require updates to the firmware. Likewise, updated software
components may expose bugs in the hardware implementation
or require new features.

3) Simulation: Once a software workload is generated,
it can be executed on a spectrum of simulators at differ-
ent levels of detail and performance. On one end of the
spectrum we find functional simulators such as QEMU [18]
and riscvOVPSim [19] which aim to faithfully implement
the system specification without particular concern for timing
modeling, and can often be used as golden models of system
behavior for verification. On the other end of the spectrum
we have cycle-exact RTL simulators such as VCS, NCSim,
ModelSim and Verilator [20]–[23], as well as RTL hardware
emulation tools such as Palladium, Zebu, and FireSim [10],
[24], [25]. In between, we find functional ISA simulators such
as Spike [26], as well as cycle-approximate modeling simula-
tors such as gem5 and Sniper [11], [12]. The general trade-
off across the spectrum of simulators is between modeling-
detail and performance. While functional simulators are very
fast and flexible, RTL simulation is much slower and requires
complete hardware designs but provides a higher fidelity of
performance results and feature correctness. Ideally, initial
software development can be done on functional simulation
while slow and expensive cycle-exact simulation is only used
for hardware verification and final performance evaluation.
However, “toggling” between simulators is not a trivial task,
and software setup is often tightly intertwined with some
simulator assumptions.

B. Software Workload Management Pitfalls

An ad-hoc approach to software workload management can
require a significant up-front time investment with ongoing

maintenance costs as designs evolve and workloads are added.
There are a number of common pitfalls to this approach. The
first is simulator compatibility. Each simulation platform may
require a slightly different configuration and care must be
taken to ensure that software remains correct and faithful to
the experiment when switching simulators. Another common
pitfall is the generation of “magic” images: software workload
artifacts that were built ad-hoc and are hard to reproduce. Sys-
tem configuration is challenging and error-prone, if multiple
manual steps are needed there is significant room for forgotten
steps or inconsistencies. Furthermore, a poorly documented
build process can make experiment reproduction difficult or
impossible. Finally, without additional system support, exper-
iments may require manual interventions. Users may need
to wait for the system to boot completely before logging in
and running a benchmark, and results need to be manually
extracted from the serial output or disk image after a run.
These interventions can introduce non-determinism in the
experiment and, again, are time consuming and error prone.

C. Requirements

In contrast to the ad-hoc approach, we advocate for the
use of an automated workload management system where the
software workload life-cycle is managed automatically through
standardized workload descriptions. We now identify several
key requirements that a more general workload management
tool should provide:

1) Flexible Design: Users should be able to change any
part of the system, but provide only what is needed
for their specific project. Reasonable and up-to-date
defaults must be available for all system components.

2) Maximal Reuse: Workloads must be described in a
way that can be shared and built upon without inside
knowledge.

3) Flexible Simulation: It must be easy and reliable to
switch between different levels of simulation while min-
imizing software differences.

II. THE FIREMARSHAL TOOL

In order to address the requirements of section I-C, we
developed FireMarshal. FireMarshal is an open source soft-
ware workload management tool for RISC-V-based hardware
systems development2. The system currently supports the
Chipyard framework [9] (based on the RocketChip SoC gen-
erator [27]), and by extension the FireSim FPGA-accelerated
cycle-exact simulator [10]. However, FireMarshal is designed
to be extended to other platforms.

FireMarshal generates workloads from machine-readable
configuration files (in JSON or YAML). Under FireMarshal,
workloads can be tracked in a version-controlled repository
and reproduced as-needed. Configuration files typically specify
a base workload to serve as a starting point, and any workload-
specific changes that must be made to that base (see section
III-A for details). FireMarshal comes with several standard

2https://github.com/firesim/FireMarshal
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workloads that are configured to work on the target platform
and are updated regularly to keep in sync with the evolving
ecosystem. Complex projects may create hierarchical work-
loads, where common options are defined once and inherited
by many workloads (e.g. unit tests and benchmarks likely
share startup code). Most software development can occur in
functional simulation on any development machine, with slow
and expensive RTL simulation utilized only to drive the final
performance evaluation.

FireMarshal is designed around five major phases of the
workload lifecycle: specify, build, launch, test, and install.
Users begin by creating a FireMarshal specification for their
workload (a JSON or YAML file), they can then build the
software artifacts (i.e. a boot binary and disk image). After
building the workload, users can launch it in fast functional
simulation for testing and software development. Once users
are satisfied with their workload, they can install it to a
cycle-exact RTL simulator for performance evaluation. The
same tests can be run on both functional and RTL simulation
to ensure consistent behavior. Figure 2 depicts a typical
workflow.
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Fig. 2: Typical FireMarshal flow. Configuration files are built
into a boot binary and rootfs for each job in the workload.
The jobs are then launched in either functional or cycle-exact
simulation (FireSim in this example). Finally, run outputs are
collected and compared against known-good outputs.

III. DESIGN AND IMPLEMENTATION DETAILS

FireMarshal is implemented as an open source command
line application along with a set of preconfigured software
components. Table I summarizes the commands that FireMar-
shal supports. In the following sections we will describe how
FireMarshal supports each phase of the software workload
lifecycle.

Command Description
build Construct the filesystem image and boot-binary
launch Launch this workload in functional simulation
test build and launch the workload and compare its outputs

against a reference
install Set up a cycle-exact RTL simulator to launch this workload.

TABLE I: Commands supported by FireMarshal.

A. Specify

The workload lifecycle begins with users specifying their
workload through a JSON configuration file and any artifacts
that should be included (e.g. benchmark sources). FireMarshal

Option Description
base Start from a pre-existing workload - inherit all options

unless explicitly overridden
overlay/files Files to include in the image (e.g. utilities, bench-

marks, config files, etc. . . )
host-init Script to run before building (e.g. cross-compile)
guest-init Script to run once on guest (e.g. install packages)
run/command Script to run every time the image boots (e.g. default

experiment)
outputs Files to copy out of the image after an experiment
post-run-hook Script to run on the output of the experiment (parse

or format results)
linux Linux customization options including Linux source

directory, kernel configuration options to modify, as
well as any needed kernel module sources

firmware Firmware-related options including choice of
firmware, and build options.

spike custom Spike binary to use
spike/qemu-args Additional arguments to pass to functional simulators
jobs Additional, related images to build (e.g. each node of

a networked workload)

TABLE II: Common FireMarshal configuration options.

provides options for workload inputs and outputs, component
customization (e.g. custom Linux source), and hooks for user
scripts to run at different points in the workload lifecycle.
Table II describes several common options. All options except
base (described next) are optional.

1) Inheritance and Jobs: A key concept in FireMarshal
is inheritance. There are many available options for each
workload, some fairly complex. To minimize repeated work,
FireMarshal allows users to specify only the options that have
changed relative to a base workload. For example, many
workloads change only the run option to create workloads for
different benchmarks while the base may include a filesystem
overlay or a script for installing benchmark prerequisites.

While individual workloads are intended to run indepen-
dently, some simulators (like FireSim) support multi-node
simulations. In this case, several workloads are expected to
run simultaneously. The jobs option allows users to specify
multiple related workloads. Jobs are implicitly based on the
top level workload description and follow all inheritance rules.

2) Boards and Bases: The most basic workloads that users
can inherit from are provided by FireMarshal and target a
specific hardware platform (called a “board”). This means
supporting SoC details, peripherals, and any associated logic
or quirks. Users will rarely need to define or modify a board,
they should be provided by the SoC generation framework. To
define a board, the framework authors must provide a number
of key components:

• Linux Source: A version of Linux known to work with
the board or a link to the default version included with
FireMarshal (a recent release of the official Linux kernel).

• Firmware: RISC-V systems require a supervisor bi-
nary interface (SBI) to perform low-level functions.
Users may provide their own implementations of either
OpenSBI [28] or the Berkeley Boot Loader (bbl) [29] (or
use the included defaults).

• Drivers: If the board includes any additional devices such
as a network or disk interface, the user must include the
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needed Linux drivers. Drivers will be automatically built
and loaded by FireMarshal.

• Base Workloads: A board must include base workloads
for supported distributions (FireMarshal currently sup-
ports Buildroot [17] and Fedora [16]).

B. Build

The next step in the workload lifecycle is to build the
workload. A FireMarshal build produces a bootable binary,
including firmware, Linux kernel, and initramfs (containing
platform drivers and other early-boot code), as well as a disk
image (figure 3). In some cases, users may wish to produce
a workload that does not involve a disk device. In this case,
they can specify the --no-disk command line option, which
causes the disk image to be embedded in the initramfs. This
process happens transparently and does not require further user
intervention.

Firmware

Linux Kernel

Initramfs

Firmware
Linux Kernel

Initramfs
+

Disk Image--no-diskdisk.img

Fig. 3: The outputs of the build command. By default, a
complete bootable binary and a disk image are produced.
For diskless builds, users provide the --no-disk option, in
which case the disk image is embedded in the Linux initramfs.

1) Build Phases: When performing a build, FireMarshal
goes through a number of steps, although not every step is
required for every workload:

1) Configuration: The first step is to read the workload
configuration file and any potentially related configura-
tions. FireMarshal employs a search order similar to the
$PATH variable in a Unix shell to locate workloads.
Parent workloads are parsed recursively, with children
inheriting options from their parents (and overwriting
as needed).

2) Build Parents: The build process from this step forward
is performed recursively to produce filesystem images
for all parents. This will be needed later in step 5a.

3) host-init: If the workload includes a host-init script, this
is run before proceeding to ensure that any generated
artifacts are available in future steps.

4) Boot Binary: If the user has hard-coded a boot binary
(generally a bare-metal workload generated in host-init),
the following steps are skipped. If the child workload
would not generate a different binary than its parent,
FireMarshal simply makes a copy of the parent’s binary
and skips this step.

a) Final Linux Configuration: To form the final
Linux configuration, FireMarshal begins with the
RISC-V default configuration. If needed, users can
provide Linux kernel configuration “fragments”

that contain a list of options to change in the
default configuration. These are merged in order,
with more recently defined options overwriting ear-
lier duplicates. The use of configuration fragments
makes workloads more portable between kernel
versions.

b) Kernel Module Generation: With a valid kernel
configuration, any needed kernel modules defined
in the workload can now be built. This includes
system-provided device drivers, as well as user-
provided kernel modules.

c) Generate Initramfs: In order to load drivers
as early as possible, and to provide a mostly
workload-independent boot phase, FireMarshal
generates an initramfs as the first-stage init. This
initramfs loads both system and user-provided ker-
nel modules.

d) Linux Compilation: The full Linux kernel can
now be compiled with a reference to the initramfs
to embed.

e) Firmware: The desired firmware is compiled and
linked with the Linux binary. At this stage, the boot
binary is complete.

5) Disk Image: As with the boot binary, users may provide
a hard-coded disk image (or no image at all in the case
of bare-metal workloads), in which case the following
steps are skipped.

a) Copy Parent Image and Add Files: FireMarshal
makes a copy of the parent’s disk image and then
copies over any files from the file or overlay
options.

b) guest-init: At this stage, we have a bootable (albeit
incomplete) workload. FireMarshal now configures
the workload to run the guest-init script (if pro-
vided) and boots it in QEMU. This script is run
exactly once.

c) Boot Command: The final step in filesystem
generation is to configure the workload to run
user-provided code on every startup (from the
command or run options). This is done by in-
serting a new step in the Linux distribution’s init
system (init for Buildroot, systemd for Fedora).

6) Initramfs-Embedded FileSystem: As shown in figure
3, users may provide the --no-disk option to Fire-
Marshal to eliminate the need for a disk device. To do
this, FireMarshal runs the build process as described
above, but recompiles the kernel with the generated disk
image as its initramfs payload.

As this process can be quite time consuming, especially
for workloads with deep inheritance hierarchies, FireMarshal
uses a dependency tracking system (similar to GNU make)
to avoid unnecessary rebuilding. This is done with the doit
python package [30].
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C. Launch

Once a workload is built, users can run it in functional
simulation. The launch command takes a workload and
calls the specified simulator (QEMU by default) to run it.
Serial inputs and outputs are presented to the user interactively
and logged to a file for later analysis. For workloads with a
command or run option, the user does not need to interact
with the simulation. It is common to omit these options in
a parent workload for interactive testing and development.
When the simulation completes, FireMarshal copies any output
files and the serial port log to an output directory. The
post-run-hook script (if any) is run against this output
to produce final results.

D. Test

While the launch command is primarily used for in-
teractive debugging and development, FireMarshal supports
hands-off testing with the test command. This is useful
for running automated regression tests. The test command
builds and launches the workload, and then compares the
outputs against any provided reference outputs. A complete
comparison of outputs is not typically appropriate as there may
be irrelevant or non-deterministic output (e.g. time stamps).
Instead, FireMarshal is able to clean outputs and allows the
reference to contain only a subset of the expected output.
A test that produces that subset somewhere in its output is
considered a success. Workloads with more complex success
criteria can use the post-run-hook option to perform
custom analysis of outputs.

E. Install

Once a workload passes functional simulation, users may
wish to run it against a cycle-exact RTL-level simulator. Unlike
functional simulation, RTL-level simulators require hardware-
specific configuration and build processes that are out of scope
for a workload management tool like FireMarshal. Instead,
FireMarshal provides the install command to convert the
workload specification into a valid configuration for the RTL-
level simulator. From there, users interact with the simulator
normally to launch the workload. After a simulation, users
can verify the outputs using the test command with the
--manual option to compare outputs as if FireMarshal had
run the workload. It is important to note that the workload
outputs are not modified in any way between the launch
and install commands; the exact same artifacts are run
on both simulators. FireMarshal currently supports FireSim,
though integration with VCS and Verilator is planned.

IV. CASE STUDIES

A. Page Fault Accelerator

We now describe how FireMarshal was used to develop and
evaluate a new accelerator called the Page Fault Accelerator
(PFA) [31]. While a complete description of the PFA itself
is out of scope for this paper, we quickly summarize its
relevant features (see figure 4). The PFA was designed to
improve the performance of systems that use remote memory

User
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PFA NIC

①

② ③

④
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Fig. 4: Block diagram of the Page Fault Accelerator. The
kernel asynchronously provides free physical pages to the
PFA 1©. On a page fault 2©, the MMU consults the page table 3©

and requests any remote pages from the PFA 4©. The PFA
initiates an RDMA operation from the network adapter 5©. The
kernel can now asynchronously request a list of fetched pages
for bookeeping purposes 6©. The critical path for a remote page
fault (steps 2©- 6©) is handled synchronously in hardware while
slow kernel interactions (steps 1© and 6©) are moved off the
critical path.

as a swap device (e.g. infiniswap [32]) by handling the basic
remote memory lookup and fetch in a new hardware module
embedded in the MMU. The complex paging logic in the OS
(e.g. LRU schemes, reverse lookups, etc) could be deferred
to an asynchronous background thread. The OS interacted
with the PFA through several memory-mapped queues and
special page table entry values. Similar to regular RDMA,
local memory regions were registered with the PFA for fetched
pages. The PFA directly interacted with the network interface
through its exposed queues (much the same way the OS driver
would).

The accelerator itself was implemented in a few hundred
lines of Chisel [33] and required relatively little engineering
time (made possible by leveraging an existing RDMA-capable
network interface). However, the kernel modifications to sup-
port the accelerator were extensive and complex. Beyond the
kernel, user level services like systemd and cgroups required
careful configuration and integration with experimental proce-
dures. Once the system was configured, we needed to perform
a number of software tasks:

1) Bare Metal Unit Tests: To verify software drivers and
the hardware implementation, we implemented a golden model
in the Spike functional simulator. The golden model exposed
all software-visible interfaces and emulated remote memory.
Low-level tests were implemented either completely bare
metal or in the RISC-V proxy kernel [29]. These tests were
critical for debugging hardware implementation issues and
served as a reference for the specification. In our FireMar-
shal workload configuration, we included a reference to our
modified simulator (using the spike option) and a script
to cross-compile the benchmarks (using the host-init
option). This test was run using the launch command and
debugged interactively until we were satisfied that it worked
correctly. The serial port output was saved as a reference
output (using the testing/refDir option) and used for
regular automated tests (with the test command). This same
workload could then be run on FireSim to verify the hardware
implementation using the install command. This test was
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revisited periodically as the hardware specification evolved,
or as new corner-cases were identified that required additional
unit-tests.

{ "name" : "pfa-base"
"base" : "buildroot",
"host-init" : "cross-compile.sh",
"linux" : {

"source" : "pfa-linux/",
"config" : "pfa-linux.kfrag",

},
"overlay" : "pfa-test-root/",
"spike" : "pfa-spike"

}

{ "name" : "latency-microbenchmark",
"base" : "pfa-base",
"post-run-hook" : "extract_csv.py",
"jobs" : [

{"name" : "client",
"linux" : {"config" : "pfa.kfrag"}
"command" : "latencyTest.sh"},

{"name" : "server",
"base" : "bare-metal",
"bin" : "serve"} ]

}

Listing 1: Base workload for PFA Linux unit tests (upper)
and an example microbenchmark workload (lower). The
microbenchmark has one Linux-based job for the client
benchmark, and a bare-metal job to serve remote memory.
The jobs will be instantiated as network nodes in FireSim
simulation.

2) Linux Unit Tests: The most significant engineering chal-
lenge in the PFA project was in modifying the Linux kernel to
asynchronously process page faults, and configuring the exper-
imental environment in the OS (e.g. configuring an appropriate
swap device, setting cgroup limits, etc.). We also needed
to modify the default Linux kernel build configuration to
enable certain swapping-related features. To test these changes,
we required a simple Linux environment for unit tests. We
implemented these tests on Buildroot, a bare-bones Linux dis-
tribution designed for embedded workloads. Buildroot could
boot quickly and minimized the amount of extra code running
in the system. We began with pfa-base, a base workload
that would handle the common setup tasks. Individual tests and
benchmarks inherited from pfa-base, typically adding only
a Linux configuration fragment and a command option to run
a particular benchmark. Listing 1 shows an example for one
particular benchmark, a microbenchmark that measured the
latency of each step in a remote page fault (see figure 5 for
example results). Note that there were many workloads similar
to latency-microbenchmark, but only one pfa-base.

The first step in developing the kernel modifications was
to create a non-accelerated baseline by emulating the PFA’s

behavior in the regular page fault handler. These modifications
were non-trivial and introduced complex, non-deterministic,
bugs. QEMU allowed us to run long-running tests in a reason-
able time frame, as well as providing an integrated GDB server
for interactive debugging. Once we were satisfied with the
emulated behavior, we introduced the real hardware driver and
ran the tests against our Spike golden model. The only change
required in the workload was a one-line Linux configuration
fragment (to enable the PFA driver). This meant that the
experimental setup and test parameters were identical between
the two simulators, giving us confidence that any errors were
due only to the driver change. When everything worked in both
Spike and QEMU, we could run the unmodified workload in
RTL simulation to verify the hardware implementation (using
install). Since the software had been verified against the
golden model in the Linux workloads, and the golden model
had been verified with the bare-metal unit tests, we could
narrow down any errors quickly. Since the process of targeting
different simulators was automated, there was minimal room
for human error.
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Fig. 5: Example result from the PFA fault latency microbench-
mark. The figure shows the time contribution of different
phases of a remote page fault between the accelerated PFA
case and a pure software implementation.

3) End-To-End Benchmarks: Once we had confidence that
the system operated correctly, the PFA was evaluated against
end-to-end macro-benchmarks. Some of these real-world ap-
plications had many dependencies that would be difficult
to fulfil manually as required by Buildroot. Instead, we
leveraged the package management system of a full-featured
OS (Fedora) to install dependencies at build time (using
a guest-init script). While more full-featured, Fedora
took significantly longer to boot and introduced hard-to-debug
features like asynchronous systemd services. Therefore, it was
critical to ensure the kernel implementation was correct before
running the end-to-end benchmarks.

The workload description process was similar to that of
the Buildroot unit tests, but we additionally included a
post-run-hook option to automatically process experi-
mental results (from the serial output) into CSV files for
analysis. This ensured that experiments could be re-run by
ourselves or external users and processed in a consistent
way. In other words, the FireMarshal workload served as
unambiguous documentation of our experimental procedure
for reproducibility and comparison.
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In all, FireMarshal allowed us to run unit tests and track
experimental results with minimal human interaction, enabling
a tight feedback loop as the project evolved.

B. Benchmarking: SPEC2017

Not every research project requires custom software for
evaluation. For example, changes to a branch predictor or
cache design are best evaluated using standard benchmarks.
In this section, we describe how FireMarshal was used to
provide one common benchmark used in the architecture
community: SPEC2017 [34]. SPEC provides a number of
scripts for interacting with the benchmark, while projects
like Speckle [35] simplify the process of cross compiling for
new architectures. However, having the binaries alone is not
sufficient for a benchmark. Users still need to invoke and
measure the benchmarks in a consistent way as well as compile
and format results. Listing 2 shows one example workload for
the intspeed benchmark suite.

In this section we describe an experiment to compare two
different branch predictors on the Berkeley Out-Of-Order
Machine (BOOM [36]) using the intspeed benchmark suite
from SPEC2017 (on the reference dataset). In one case, we
use an older branch predictor from BOOM v2 (based on
Gshare [37]), in the other we use the more recent TAGE-based
predictor [38], [39].

{ "name" : "intspeed",
"base" : "buildroot",
"host-init" : "speckle-build.sh

intspeed ref",
"overlay" : "overlay/intspeed/ref",
"rootfs-size" : "3GiB",
"outputs" : ["/output"],
"post-run-hook" : "handle-results.py",
"jobs" : [

{ "name": "600.perlbench_s",
"command": "./intspeed.sh 600.

perlbench_s --threads 1"},
...
{ "name": "657.xz_s",

"command": "./intspeed.sh 657.xz_s
--threads 1"}

}

Listing 2: Workload for the intspeed benchmark suite from
SPEC2017. In total, there are 10 jobs, one for each benchmark
in the suite. Jobs are able to run in parallel in FireSim.

In the general case, SPEC does not require changes to
system software such as the Linux kernel, and simply inherits
from the default Buildroot environment. This means that the
SPEC workload will transparently receive any updates to the
built-in workloads and will be portable across many boards and
versions. Furthermore, users are free to copy this workload
description and change the base if their particular example
requires additional configuration (no changes were needed
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Fig. 6: Combined graph output of the spec2017 intspeed
workload. A similar graph is generated automatically for
each experiment while the combined graph can be generated
manually using an included script.

for our branch-predictor experiment). Cross-compilation of
the benchmark is provided by Speckle (in the host-init
option), while the FireMarshal workload marks the Speckle
outputs as an overlay. For each benchmark, the run script will
place results in /output, so FireMarshal is instructed to
retrieve these after the workload finishes running (using the
outputs option).

Each benchmark in the suite is independent and can run
in parallel. We exploit this in the workload by specifying 10
jobs (one for each benchmark). Each job differs only in the
command option, specifying which benchmark to run. When
installed to FireSim, each job is instantiated as a node in
the simulated cluster and run in parallel. This optimization
reduced the runtime for our experiment from about two weeks
to roughly two days.

Once the workload has finished, we pass the results through
a post-run-hook script that combines all results into a
CSV file (listing 3), as well as plotting a simple diagram
for quick reference (omitted for brevity). Figure 6 shows the
combined output of our two experiments from the result CSVs.

name,RealTime,UserTime,KernelTime,score
600.perlbench_s,1428.54,1428.0,0.43,1.24
...
657.xz_s,3034.63,2999.81,34.63,2.04

Listing 3: Example CSV output of the spec2017 intspeed
workload for the TAGE configuration.

This workload was developed entirely on a cheap local ma-
chine using QEMU and without regard for the eventual branch-
prediction experiment. It was run for the first (and only)
time on cycle-exact simulation to gather the final performance
numbers on the real hardware designs. Since FireMarshal
ensures that identical inputs are run on both functional and
cycle-exact simulations, we had confidence that the workload
would run correctly the first time.

1) User Experience: In practice, most users do not need
to look at the workload description. It was written once and
can be reused by anyone without modification. A typical user
would run the SPEC workload with the following steps:
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1) Install SPEC: Since SPEC is closed-source software,
we are unable to automate installation. Users must first
acquire and install the SPEC benchmark suite sources
and a license to use them.

2) Download the FireMarshal Workload: The FireMar-
shal workload can be cloned from a public git reposi-
tory3.

3) Build the Workload: Once SPEC is installed, Fire-
Marshal can build the entire workload suite with one
command: marshal build intspeed.json.

4) Install the Workload: Once built, the workload could
be run in functional simulation with the launch
command, but this is not typically needed since
users do not need to do any software develop-
ment. Instead, users will typically have FireMarshal
create RTL simulator-compatible configuration files:
marshal install intspeed.json.

5) Run the Simulation: Users now interact with their
RTL simulator as usual, providing their hardware con-
figuration and any other simulation parameters they
wish. When the simulation completes, the simulator will
provide an output directory containing the benchmark
results as generated by the post-run-hook script (see
figure 6 and listing 3).

Other than acquiring the licensed SPEC suite itself, we did
not need to interact with any target software in order to run
the branch-prediction experiment. All that was required was
to generate our desired hardware configurations (the feature
we actually cared about); the software “just worked”. Further-
more, results were recorded in a standard and reproducible
way. If we were to add a new branch predictor in the future, we
could have confidence in our experimental setup to compare
against previous results without needing to re-run them. Most
importantly, now that the workload has been implemented, it is
freely available for anyone to use or improve without repeated
effort.

While we describe SPEC here, there are other similar bench-
mark workloads already available including CoreMark [40]
and the ONNX-runtime deep learning framework [41], [42].
As new benchmarks are ported or developed, they too can be
shared with the community in a similar fashion.

C. Education: Computer Architecture and Engineering

Educational settings are notoriously sensitive to consistency
and reproducability of results. As computer science classes
scale to a large numbers of students, mass assignments and au-
tomated grading are becoming necessities in many university
courses. However, reproducability is often extremely sensitive
to software versioning and simulator compatibility. A simple
change in the Linux kernel version can dramatically change
performance characterization results, which would be reflected
in various student assignment submissions.

Furthermore, we would like students to invest their time
in the educational objectives of characterization and measure-

3https://github.com/ucb-bar/spec2017-workload

ment, rather than spending the majority of their time on setting
up environments and building boiler-plate setup procedures.

While system environment platforms such as Docker or
Vagrant provide a solid platform for systems-oriented classes,
they are insufficient for hardware-simulation classes that re-
quire support for a broader set of configurations and cross-
compilation. We used FireMarshal in an advanced graduate
and undergraduate class on the subject of hardware for ma-
chine learning [43]. As part of this class, students had to
optimize tiled convolution and matrix multiplication imple-
mentations for an RTL implementation of a machine learning
accelerator integrated into a RISC-V SoC. The optimizated
software implementations were to be used as a library within
DNN inference applications utilizing ResNet-50 and Mo-
bileNet DNN models. Figure 7 depicts the student workflow
for this assignment.

(Re)build 
workload

Analyze
Results

Modify
matmul.c

Functional
Simulation

Cycle-Exact
Simulation

Develop Evaluate

Fig. 7: Student workflow. Students were asked to tune a
matrix multiplication routine for a particular deep learning
accelerator. The course staff provided a FireMarshal work-
load as a starting point. Students used fast and inexpensive
functional simulation when developing their code, while slow
and expensive cycle-exact simulation was only used to eval-
uate performance. Due to FireMarshal’s deterministic builds,
results were portable between simulation environments and
repeatable between iterations. Results could be reproduced
accurately by the course staff for grading.

In order to enable students to integrate their optimized
libraries with the DNN inference applications, we used a Fire-
Marshal workload definition. This enabled students to focus
their time on the development of their library implementations
rather than spending it on setting up their testing environment
on various iterations and platforms.

Furthermore, as part of their development process, students
initially developed their implementations using the Spike
functional simulator, and then performed measurements using
FireSim. By using the same FireMarshal workload definition,
students were able to take advantage of the portability of
FireMarshal workloads across different RISC-V simulation
platforms.

Thanks to the determinism of FireSim simulations, and the
reproducability of FireMarshal workloads, students were able
to obtain repeatable results down to an exact cycle-count of
each executing application and course staff could reproduce
these results for grading purposes.

D. Other Use Cases

We now briefly summarize additional real-world use cases.
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Centrifuge is a tool for design-space exploration of ac-
celerators using high level synthesis [44]. Typical Centrifuge
benchmark variants differ only in the accelerator wrapper code,
inheriting from a common base that provides experimental pro-
cedures. This base, in turn, inherits from a generic centrifuge
workload that provides kernel and user-space modifications to
support the accelerator interfaces.

Keystone is a secure enclave for RISC-V based systems
[45]. Unlike other hardware enclaves, most of Keystone is
implemented in the firmware and operating system. Unfortu-
nately, this makes the system difficult to set up correctly. To
avoid these issues, Keystone provides a FireMarshal workload
that can be used as the base for any existing experiments. En-
abling Keystone is as simple as switching the base option in a
workload from the board default to keystone-base.json.

V. RELATED WORK

Containers have become a standard mechanism for building
and distributing workloads in the cloud and other server-side
environments. Docker is a popular tool for describing and
distributing these workloads [46]. Docker was influential in the
design of FireMarshal and they share many features and design
principles. In terms of scope, Docker provides mechanisms
for workload inheritance (like FireMarshal’s base option),
mechanisms for setting up the disk image (e.g. guest-init
or files), and startup software. However, Docker works
only on Linux userspace setup and cannot modify the full
software stack as needed for architectural research. It is also
not designed for automated experiments with testing, output
parsing, or simulator integration.

There are also numerous tools for Linux distribution setup.
For example, Buildroot allows users to describe a minimal
Linux environment in a configuration file [17]. Indeed, Fire-
Marshal uses Buildroot internally to construct the lowest base
workload. There are other similar tools such as Kickstart [47],
AutoYast [48], and others. Of particular note is Yocto which
includes a flexible and composable build system (called bit-
bake) similar to FireMarshal’s inheritance model for disk-
related options [49]. However, these systems are primarily
designed for system administration and deployment rather than
experimentation and do not provide full-stack setup, exper-
iment management, or simulator integration. As such, they
serve as good starting points for FireMarshal base workloads.

Collective Knowledge Workflow (CK) is a general purpose
workflow framework, similar to bitbake [50]. FireMarshal
focuses specifically on workload management for architecture
research, including portability between simulators. CK does
not prescribe a particular schema or base components while
these are central contributions of FireMarshal.

Finally, it is common for hardware development frame-
works to include some form of SDK to jump-start software
development. For example, Raspberry Pi, Nvidia and Xilinx
all provide SDKs for some of their products [51]–[53]. For
RISC-V SoCs, examples include the Ariane SDK and the
SiFive freedom-u-sdk [54], [55]. The SDKs integrate an em-
bedded distribution generator (Buildroot [17] and OpenEm-

bedded [56], respectively), along with a default Linux kernel
configuration and firmware tuned for their platforms. These
SDKs are similar to FireMarshal in their ability to produce
working images, but are primarily targeted at producing a
production software platform rather than a suite of experiments
over the rapidly changing and non-standard hardware used by
architecture researchers.

VI. FUTURE WORK

FireMarshal is designed to be extensible, especially in
its support for new platforms. In the future, we hope to
extend the available boards to include other SoC development
frameworks like OpenPiton. We are currently working on
support for a post-tapeout bring up and evaluation effort where
the existing suite of FireMarshal-based benchmarks are run in
an identical manner in both function simulation and during
bringup allowing researchers to triage issues with potentially
faulty hardware. While the board and base distribution systems
are well modularized, simulator integration is not. In the
future, we hope to enable pluggable simulator connectors to
expand the scope and capability of the install command,
including support for other RTL simulation platforms.

Another major limitation is the lack of a network model
in functional simulation. QEMU-based simulations can access
the host’s internet, but we cannot currently model inter-job
networking. This means that we cannot fully test and develop
networked applications without using FireSim.

Finally, FireMarshal was designed to promote re-use and
sharing among the broader community. To succeed in this,
more workloads and benchmarks need to be ported and shared.
We also need to continue to maximize re-use by providing
more tools and base workloads for common tasks like inte-
grating accelerators, or running bare-metal applications. All
of which currently require poorly documented and complex
techniques.

VII. CONCLUSION

In this paper, we have presented FireMarshal, a tool to create
and share software artifacts for reproducible and repeatable
experiments on full-stack SoCs. FireMarshal is available under
a BSD-style open source license and already includes a
number of useful workloads. Reproducibility and repeatability
are critical to academic inquiry, but the complexity of full-
stack hardware systems makes these properties challenging to
achieve in practice. FireMarshal manages software complexity
in a concrete and shareable form while automating the tedious
and error prone tasks in the development life cycle. With
FireMarshal, researchers can develop repeatable workloads
that can be reproduced by the academic community and built
upon by anyone.
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