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Abstract—The design of computing systems has changed dra-
matically over the past decade, but most courses in advanced
computer architecture remain unchanged. Computer architecture
education lies at the intersection between computer science and
electrical engineering, with practical exercises in classes based on
appropriate levels of abstraction in the computing system design
stack. Hardware-centric lab exercises often require broad infras-
tructure resources and tend to navigate around tedious practical
implementation concepts, while software-centric exercises leave a
gap between modeling and system implementation implications
that students later need to overcome in professional settings.
Vertical integration trends in domain-specific compute systems,
as well as software-hardware co-design, are often covered in class-
room lectures, but are not reflected in laboratory exercises due to
complex tooling and simulation infrastructure. We describe our
experiences with a joint hardware-software approach to exploring
computer architecture concepts in class exercises, by using open-
source processor hardware implementations, generator-based
hardware design methodologies, and cloud-hosted FPGAs. This
approach further enables scaling course enrollment, remote
learning and a cross-class collaborative lab ecosystem, creating
a connecting thread between computer science and electrical
engineering experience-based curricula.

Index Terms—Computer Architecture, Education, FPGA, Sim-
ulation

I. INTRODUCTION

The study of computer architecture traditionally traverses
the hardware-software interface: first, it informs programmers
about the logical structure of the computing hardware execut-
ing their software, so as to explain its performance character-
istics and guide the optimization of software; and second, it
educates hardware engineers about the principles, techniques,
and trade-offs that permeate the design and implementation
of computer systems. However, the development of domain-
specific computing systems in recent years requires a change
in exploration of vertically integrated computing architectures
and software/hardware co-design. This emphasis is reflected
in explicit hardware and programming models for parallel
computing through differentiated hardware architectures such
as FPGAs, GPUs, and other custom accelerators in both edge
and cloud computing platforms. While traditional computer
architecture education has been able to develop analytical
models and rules-of-thumb for processor performance based
on the simple single-thread software model, modern computer
architecture education requires a much more empirical ap-
proach, and relies upon a higher degree of empirical expe-
rience and simulation.

Approaches to computer architecture education can be par-
alleled to the Iron Law of Processor Performance [1], [2],
which factors processor performance into three components:
the number of instructions executed, cycles per instruction,
and cycle time. These succinctly capture the contributions
from various layers of the computing stack, spanning from
algorithms to circuits. While all computer architecture cur-
ricula broadly cover fundamentals of the Iron Law, individ-
ual courses tend to emphasize either a software-centric or
hardware-centric perspective. A software-centric approach fo-
cuses on the interaction between the programming model and
microarchitecture, associated with the first two components of
the Iron Law: the number of instructions executed and the
cycles per instruction. Experiments typically rely on abstract
functional or cycle-approximate simulators. Knowledge of
RTL description languages is generally not required for most
computer architecture courses. A hardware-centric approach
focuses on the physical implications of computer architecture,
represented by the latter two factors of the Iron Law: the cycles
per instruction and the cycle time. Usually tightly entwined
with the digital design curricula, this highlights the influence
of technological constraints: for example, the relationship
between pipelining and register timing; the considerations of
SRAM organization in cache and register file design; and the
limits on microarchitectural complexity due to wire congestion
and power consumption. Lab assignments often involve the

Fig. 1. Multi-Class Flow Using Unified Generator-Based System Framework



manipulation of RTL and associated methodologies [3], [4].
The multi-faceted approach presented in this paper (and

summarized in Figure 1) traverses the software-hardware in-
terface, enabling a complete system view of processor perfor-
mance and efficiency through practical exercises.

II. GENERATOR-BASED HARDWARE DESIGN

Generator-based approaches to processor and digital system
design have been under development in recent years [5]–[9]. In
a generator-based approach, highly parameterized and modular
implementations of digital designs using high-level program-
ming language abstractions enable generation of a broad range
of RTL designs. Generators describe digital designs at the RTL
level in conjunction with additional primitives from functional
programming and metaprogramming to encode a high level
of parameterization and modularity. In contrast to high-level
synthesis (HLS) approaches, hardware generators do not raise
the level of abstraction above the RTL level. The design of
hardware generators still requires a thorough understanding of
RTL-based digital design considerations. However, the usage
of hardware generators is significantly simplified through
modularity and parameter configuration schemes. Within the
research and development community, these usage models
enable additional re-use of building blocks towards specialized
computing systems. Within the education community, these
simpler usage models open up new educational opportunities
for demonstrating complex system interactions through modu-
lar and parameter-based lab exercises. Similar approaches for
computer architecture education have been proposed in the
realm of embedded systems [10], [11], where instead of RTL
generators, Architecture Description Languages (ADLs) can
be used to compose and configure processor structures at a
higher level of abstraction. Unfortunately, unlike RTL, ADLs
do not have tooling support to be synthesized into gate-level
digital integrated circuits, and therefore their usage is still
restricted to only modeling rather than implementation.

The RISC-V ISA is a free and open ISA specification that
has garnered industrial and academic momentum in helping
lead the open source hardware movement. The rapid adoption
of RISC-V in the open-source community is evolving with a
strong open-source software ecosystem, as well as accessible
open-source processor implementations. The emergence of
both open-source hardware and software ecosystems makes
RISC-V an excellent tool for computer architecture educa-
tion [12]–[14]. Prior to the emergence of RISC-V, the primary
ISAs used in computer architecture education were MIPS,
LC3, x86, and ARM. The leading industry-standard ISAs (x86,
ARM) have grown to be too complex to be covered in a
course, and they lack open-source hardware processor imple-
mentations for students to interact with. On the other hand,
the simple RISC ISAs that enable open-source educational
hardware implementations lack a sufficiently supportive soft-
ware ecosystem to later demonstrate more advanced topics and
emerging frontiers in computer architecture such as parallel
and distributed computing, domain-specific acceleration, and
hardware-related security vulnerabilities.

The RISC-V ISA specification has enabled the emergence
of many open-source processor implementations that conform
to various subsets of the ISA specification – from simple
microcontrollers [15], [16] to complete application-class pro-
cessors with Linux support [6], [17]–[19]. These open source
processor implementations provide students unprecedented
access and visibility to the nuances behind practical processor
implementations. The Rocket Chip generator [6] is a RISC-
V-based generator with a sufficient maturity level in terms of
functionality and parameterization to be used across indus-
try, research, and education. It consists of Rocket, a highly
parameterized in-order RISC-V core, and supports coherent
caches and standard interconnects via the TileLink protocol.
As the tooling ecosystem around the Rocket Chip generator
has evolved, it has become more amenable to be used in a
variety of classes to demonstrate various computer architecture
phenomena. This ecosystem consists of two primary open-
source tools: FireSim FPGA-accelerated simulation, and the
Chipyard SoC research and development framework.

The Chipyard framework [20] brings together open source
hardware generators and digital design tooling for SoC devel-
opment. The Chipyard unified generator builds upon Rocket
Chip’s Chisel-based [21] parameterized hardware generator
methodology, and adds a large corpus of open-source IP gen-
erators to the existing base library, including an out-of-order
core generator [17], a vector-unit generator [22], digital sig-
nal processing modules, domain-specific accelerators, mem-
ory systems, and peripherals. Chipyard further adds tightly
integrated support for simulation and implementation tools
through automated HDL transformations and build processes.

In a generator-based joint hardware-software exercises ap-
proach using the Chipyard framework, students modify the
configuration of an RTL hardware generator and execute
an RTL-level simulation through Chipyard’s automated build
process. Figure 2 demonstrates example configurations used in
a lab exercise on the topics of memory hierarchies and caches.
In this lab, students change cache parameters and memory
hierarchy compositions and observe their interaction with
cache-tiling of matrix operations. The configuration interface
is similar to dedicated caching simulators, but the generator
emits complete SoC RTL which is compiled into a cycle-
accurate simulation executing the software workload as it
would be executed on actual silicon.

Prior work has surveyed many existing simulators [23],
[24], with classifications based on traditional usage within
the computer architecture research community as well as
through an educational and pedagogical point of view [25]–
[27], with some surveys proposing criteria for the evaluation of
their suitability for teaching courses in computer architecture.
Within the proposed criteria, the generator-based approach
demonstrated in this work would be considered under the “Ad-
vanced Architecture (AA)” category with “Design Support.”
The joint model we propose balances the trade-offs between
simulation granularity and the level of implementation detail
by using a finer scale than those used in prior simulator surveys
for education.



III. ACCESSIBLE FPGA EMULATION

The additional major challenge with RTL-based simulations
for computer architecture education is the impact of simulation
runtime on the possible scope of software workloads that can
be characterized and analyzed by students. Since software RTL
simulations are highly detailed, their runtime can be very long
– RTL simulations run at rates of 1,000-10,000 cycles per
second, which means that software running on the simulated
hardware is 10,000× slower than if running on actual silicon.
As such, characterizing a program that would take mere
seconds to run in real time may take several hours in software
RTL simulation. Higher-level computer architecture simulators
bypass this constraint by modeling only the relevant details
for the particular type of simulation (cache policy, branch
prediction, pipeline behavior), while ignoring extra system
details. This type of simulation solution is indeed valuable and
sufficient in introductory courses, but it leaves something to
be desired in system-oriented advanced computer architecture
curricula which highlight the nuances of interactions between
system components. Some hardware-centric approaches to
computer architecture utilize FPGA prototyping as part of
the class curricula. However, in addition to the overhead of
creating the RTL description of the design and learning the
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Fig. 2. Example generator configurations used in a memory hierarchy lab
exercise. Using a simple configuration-based user interface, the students
are instructed to change the internal parameters of the caches such as
associativity and cache size, as well as adding and removing components
from the memory hierarchy. The generator emits synthesizable Verilog which
is then automatically compiled and simulated using a software RTL simulator
or an FPGA-accelerated simulator for the students to characterize program
execution behaviors across the different memory hierarchies

tooling for FPGA prototyping, the students face the challenge
of distorted timing accuracy at the periphery and system level
of FPGA systems. We use the FireSim [28] FPGA-accelerated
simulation platform to enable execution of long-running RTL-
based simulations. FireSim is a research platform, originally
designed to simulate data-center scale computing clusters at
cycle-accuracy with RTL-level detail.

FireSim implements FPGA-accelerated simulation, as op-
posed to FPGA prototyping used in hardware-centric versions
of the curricula. FPGA-accelerated simulation correctly mod-
els timing behavior not only of the design under test but
also the I/Os and peripherals of the SoC. FPGA-accelerated
simulation enables deterministic and reproducible evaluation
with a realistic system environment, as opposed to FPGA
prototyping where each execution is sensitive to the FPGA
environment, and timing depends on FPGA peripheral device
performance (e.g. DRAM performance). This determinism is
important in order to obtain reproducible course results and au-
tomated grading mechanisms. Furthermore, the construction of
deterministic simulation also necessitates FireSim to automate
the interaction between the host machine and the FPGA, which
means that FireSim users do not need to directly interact with
the FPGA toolchain and the FPGA-specific configurations.

FireSim is principally designed to operate with cloud-hosted
FPGAs, specifically F1 instances in the Amazon Web Services
(AWS) Elastic Compute Cloud (EC2). Since the FPGAs are
in the cloud, students do not interact with the complexities of
any physical FPGAs. Furthermore, class size is not limited by
the availability of physical FPGAs for hands-on lab exercises.
AWS F1 instances enable scaling of FPGA-based lab exercises
to large class sizes, since FPGA access is not limited by the
number of physical FPGAs in the lab.

As an example, in the architectural component of a
Hardware for Machine Learning class [29], students were
instructed to complete an RTL implementation of a ma-
chine learning accelerator with a software-managed scratchpad
memory, and then study the effects of tiling and scheduling
of DNN models using that implementation. The study of end-
to-end performance of domain specific accelerators requires
application-level evaluation using non-standard hardware im-
plementations. The implementation stages of the assignment
were performed by using the Chipyard framework and the
base SoC and accelerator components it provides. Since DNN
models take many hours to run in software RTL simulation,
FPGA-accelerated simulation was crucial for studying the
tiling and scheduling aspects of the ML system. FireSim
allowed students to perform fast experimental iterations with
accurate performance evaluations.

During the first use of FireSim within an advanced computer
architecture class in Spring 2019 [30], a memory hierarchy
analysis lab used similar configurations to the ones in Figure
2 to run tests out of two benchmark suites used for evaluation
of commercial processors: SPEC CPU2017 intspeed [31]
and GAPBS [32]. Although FPGA-accelerated simulation is
orders of magnitude faster than software RTL simulation, the
programs in the SPEC CPU2017 intspeed and GAPBS still



take considerable time to run (50-80 minutes each on FPGA-
accelerated simulation), while the relevant memory hierarchy
effects could be demonstrated using shorter and more succinct
programs. A retrospective comparison between the two exam-
ple usages of FireSim FPGA-accelerated simulation in classes
illustrates the trade-off in educational usage of this type of
tool: Simulation time must be appropriate to the level of the
phenomena to be demonstrated in the exercise.

IV. VERTICAL CURRICULA SPAN

The use of the Chipyard environment has allowed us to
create an interconnecting thread between electrical engineer-
ing and computer science classes. By using this framework,
students who choose to take classes that straddle both fields
are able to break through the levels of abstraction and see how
different components of the hardware-software stack relate
to each other by using the same environment for labs and
assignments across various classes. Figure 1 illustrates the
multi-class flow enabled by a unified generator-based system
framework. Computer-science-oriented students do not need to
interact with RTL, as they only change configuration files and
associated software. Digital-integrated-circuits students get a
baseline design to explore VLSI optimizations. In the overlap
section between standard classes, special topics classes such
as hardware for machine learning or hardware for digital
signal processing can utilize the unified framework to integrate
unique software algorithms mapped onto custom hardware
architectures in order to demonstrate the interactions between
the two with complete system design flows.

During the Spring semester of 2020, the Chipyard frame-
work was used in three concurrent classes at the same uni-
versity, as demonstrated in Figure 1: A computer architecture
class, a digital-integrated-circuits design class, and a special
topics class about hardware for machine learning. Approx-
imately 15% of students in the special topics class were
also enrolled in the computer architecture class in the same
semester, while 10% of students in the special topics class
were also enrolled in the digital integrated circuits design
class in the same semester. The unified assignments framework
reduced the ramp-up time for students. Those who took two
classes concurrently were able to amortized their infrastructure
setup learning curve across classes. As all three are advanced
classes, they also include a project component. The unified
infrastructure enabled students to complete more compre-
hensive class projects, focusing on different components of
the framework based on the topic of the class. Students
who utilized the framework for class projects in multiple
classes demonstrated class project results that included both
architectural innovations and characterizations with complete
software evaluation, as well as integrated circuits analysis with
accurate VLSI power and area comparisons. These integrated
projects effectively increase the capacity of a program to teach
required system skills beyond the scope of a single class.

V. REMOTE INSTRUCTION

FireSim and Chipyard enable a high level of accessibility
and scalability of classes, as there is no physical infrastructure

requirement. Class size is essentially limited by the cost of
AWS credits (for cloud-hosted FPGA-accelerated simulation)
and commercial EDA license usage for the VLSI flow. The
lack of physical infrastructure requirements, and in particular
the usage of cloud-hosted FPGAs, present additional instruc-
tional benefits with respect to remote instruction. While the
COVID-19 pandemic disrupted the Spring 2020 semester, the
lab assignments in all three classes which used the joint frame-
work continued uninterrupted despite the transition to remote
instruction. However, while the possibility of large remote
class exercises using these tools is within reach and attractive,
actual deployment of these tools requires additional testing
and infrastructure enhancements to improve their robustness
and identify appropriate assignment usage models.

Furthermore, the use of cloud-hosted FPGA instances
teaches students to interact with the public cloud, which is an
increasingly desirable skill in the current professional comput-
ing world. Nevertheless, cloud-hosted FPGAs also come with
challenges of managing variable spending among students in
the class due to the dynamic nature of billing and usage. With
traditional physical lab-based FPGAs and university instruc-
tional machines, students are only limited by their own time
or availability of resources that have already been acquired. In
contrast, when using cloud-based resources, there are virtually
no availability constraints, rather only cost constraints, where
cost is directly tied to usage. This raises interesting questions
of responsibility and incentive models: Should resources be
managed centrally for the entire class, or should students be
allocated fixed amounts to “fund” their lab assignment? Should
resource usage be incorporated or reflected in assignment
feedback? What is the trade-off between students spending
more time to further improve on their assignment, while at
the same time spending more resources in order to do so?
While these questions are not unique to cloud-hosted FPGAs,
we believe they take on new meaning due to the traditional
usage model of FPGAs in classes.

VI. CONCLUSION

We present our experiences with using open-source hard-
ware generators and FPGA-accelerated simulation in advanced
computer architecture classes. We show how these tools
help mitigate some of the concerns of RTL-based simula-
tion in software-centric computer architecture educational ap-
proaches, while helping contextualize the educational assign-
ment objectives within a system-level view. We demonstrate
the benefits of this approach with respect to vertical multi-
class curricula across both electrical engineering and com-
puter sciences classes and remote instruction. As the RISC-V
ecosystem evolves and more commercial products appear on
the market, we contend these hands-on skills can hold even
more practical relevance to students and instructors alike.
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