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Abstract—Continued improvement in computing efficiency re-
quires functional specialization of hardware designs. We present
an agile design flow for custom SoCs using the Chipyard
framework, an integrated SoC research and implementation
environment for custom systems. Chipyard includes configurable,
composable, open-source, generator-based designs that can be
used across multiple stages of the hardware development flow
while maintaining design intent and integration consistency.
Through cloud FPGA simulation and rapid ASIC implemen-
tation, we demonstrate an iterative agile hardware design cycle
which enables continuous validation of physically-realizable cus-
tomized systems.

Index Terms—system-on-chip, agile, hardware, simulation,
VLSI, specialization

I. INTRODUCTION

In the face of a slowdown in technology scaling, con-
tinued improvement in system efficiency requires increasing
use of specialization and customization of chip architectures.
This era of specialization is being seen as a new golden
age of computer architecture [1], but raises new challenges
in maintaining reasonable development costs. Differentiated
architectures require efficient digital system design methods
for architectural exploration, system integration, verification,
validation, and physical design. As a results, various cus-
tomizable and heterogeneous system design frameworks and
methodologies have been proposed [2]–[5]. In particular, agile
generator-based design methods provide a solid foundation for
further innovation around the SoC design and implementation
ecosystem.

Chipyard is a framework which brings together a collec-
tion of independently developed open-source tools and RTL
generators, allowing concurrent research and development of
heterogeneous SoCs through integrated environments. Chip-
yard helps alleviate many of the challenges posed when using
independent and uncoordinated open-source tools and designs,
as often experienced in concurrent and non-uniform feature
design iterations, typical in the agile design process.

II. CHIPYARD

Chipyard provides a unified framework and work flow
for agile SoC development. Multiple separately developed
and highly parameterized IP blocks can be configured and
interconnected to form a complete SoC design. The SoC

Fig. 1. Multiple disparate design flows supported by the Chipyard framework
through generators and transformations. Starting from the same generators
and common custom configuration, a series of FIRRTL transformations
outputs appropriate Verilog and associated collateral for different design-stage
platforms.

design can be verified and validated through both FPGA-
accelerated and standard software simulations, then pushed
through portable VLSI design flows to obtain tapeout-ready
GDSII data for various target technologies. Chipyard also
provides a workload management system to generate software
workloads to exercise the design.

A. Chipyard Front-End RTL Generators

The front end of the Chipyard framework is based on
the Rocket Chip SoC generator [2], [3]. Chipyard inherits
Rocket Chip’s Chisel-based parameterized hardware gener-
ator methodology [3], including a Scala-based parameter-
negotiation framework, Diplomacy [6], that negotiates mutu-
ally compatible parameterizations and interconnections across
all IP blocks in a design. A unified top-level SoC generator
enables the generation of heterogeneous systems based on pa-
rameterized configurations. Chipyard allows IP blocks written



in other hardware languages, e.g., Verilog, to be included via
a Chisel wrapper.

Chipyard adds a large corpus of open-source IP genera-
tors to the existing Rocket Chip base library, allowing for
the construction of modern digital SoCs. These include the
Berkeley Out-of-Order Machine (BOOM) generator [7], the
Ariane core [8], the Hwacha vector-unit generator [9], digital
signal processing (DSP) modules, domain-specific accelerators
(including machine learning and cryptography), memory sys-
tems, and peripherals. The majority of these generators have
silicon-proven instances in a variety of process technologies.

B. FIRRTL Intermediate Representation

The Chipyard framework currently integrates tools to ad-
dress the three main activities within the custom SoC design
cycle: front-end RTL design, system validation/verification,
and back-end chip physical design. These different activities
require different levels of design description. For example,
while front-end RTL descriptions usually use abstract notions
of memory and I/O, back-end RTL requires more precise
descriptions mapped to the underlying process technology.
Similarly, FPGA emulation requires the digital design to
interact with FPGA-specific interfaces, periphery, and internal
components. Co-simulation also requires additional hardware
clock gating to control simulation progress.

Chipyard elaborates the front-end RTL design into a FIR-
RTL [10] intermediate representation. Custom FIRRTL trans-
formations convert the generated FIRRTL design to drive the
different flows used at different stages of the design cycle.
Using FIRRTL transformations to enable multiple disparate
design flows from the same shared code repository and source
RTL helps to reduce and amortize the environment setup
costs incurred with frequent iterations between development
stages, as is needed for an agile methodology. This approach
is demonstrated in Figure 1.

In contrast to alternative hardware package management
systems [11] or integration standards like IP-XACT, which
focus on metadata associated with particular IP components
to target different EDA flows, FIRRTL transformations can
perform wholescale manipulation of complete RTL designs in
Chipyard.

C. FPGA-Accelerated Simulation with FireSim

For full-system validation and evaluation, the Chipyard
framework harnesses the FireSim [12] open-source FPGA-
accelerated simulation platform using the AWS EC2 public
cloud. In contrast with FPGA prototyping, FPGA-accelerated
simulation correctly models timing behavior of not only the
design under test, but also the I/Os and peripherals of the
SoC. Furthermore, FPGA-accelerated simulation in FireSim
enables deterministic and reproducible evaluation within the
realistic system environment, as opposed to FPGA prototyping
where each execution is sensitive to the FPGA environment
and timing depends on the performance of peripherals attached
to the FPGA (e.g. DRAM performance). FireSim also provides

FirePerf [13], a set of powerful on-FPGA out-of-band perfor-
mance profiling tools that enable high-fidelity cycle-by-cycle
introspection into software running on the simulated system,
without perturbing the target system.

Originally developed as a platform to enable scale-out
simulation for datacenter architecture research on hundreds of
cloud FPGAs, FireSim necessarily automates the infrastructure
management and simulation mapping necessary to automati-
cally run high-performance simulations. As part of the agile
chip-design stack, this automation and integration reduces
the level of expertise required to harness cloud FPGAs for
emulation purposes and thus increases the accessibility of high
performance full-system simulation to a broad spectrum of
designers. FireSim has been useful in pre-silicon verification,
validation, and software development. From the perspective
of small agile teams with limited resources, FireSim provides
many of the features available in costly commercial emulation
platforms. In contrast with prior FPGA-accelerated simulation
tools, the accessibility of FireSim through FPGA instances on
the AWS public cloud, as well as the automation of host-target
interfaces with the FPGA, have made FireSim a popular tool
within Berkeley and other academic hardware development
users, as well as emerging startup companies.

FireSim enables co-development of software and hard-
ware simultaneously, allowing for quick software adjustment
turnarounds based on hardware modifications. Furthermore,
FireSim plays a major role in the performance and functional
validation of processors, since it enables the identification of
bugs deep into simulation execution time thanks to FPGA-
acceleration with appropriate peripheral modeling. Unlike
many other open-source hardware development platforms with
FPGA support, FireSim’s focus on simulation and emulation
as opposed to prototyping enables true pre-silicon performance
evaluation and validation in a full-system context within
the Chipyard framework. While maintaining its stand-alone
operation as an architectural research platform, FireSim was
transformed into a library which is integrated into the broader
Chipyard framework. As such, FireSim can now consume
design configurations composed within the Chipyard frame-
work, and transform them into FPGA-accelerated simulations.
Furthermore, the FireSim Golden Gate compiler has been in-
tegrated into the Chipyard framework, so it can now consume
arbitrary FIRRTL as its input, as well as external Verilog
components necessary for broader system integration.

D. Back-End Physical Design with Hammer

For back-end physical design, Chipyard includes a modular
VLSI flow named Hammer [14]. The Hammer VLSI flow
provides an abstraction layer above process-technology- and
EDA-tool-specific concerns, with the goal of increasing re-use
and modularity of vendor-specific components of the physical
design flow. To this end, the Hammer VLSI flow utilizes sep-
arate vendor-specific process technology plug-ins and EDA-
tool-specific plug-ins, which implement abstracted software
APIs to generate design-flow collateral like Tcl scripts, clock
constraints, and power specifications based on higher-level



design inputs. For example, Hammer will emit process- and
vendor-specific macro placement, obstruction, and power-strap
placement commands from a high-level process- and vendor-
agnostic description of the design. This separation of abstrac-
tion layers between design, process technology, and EDA tool
vendor enables faster adoption of open-source components.

The Hammer flow aspires to support open-source tools
in conjunction with commercial and proprietary tools by
using common levels of abstraction. As such, while the first
Hammer-based designs were implemented using proprietary
process technologies, a plug-in for the ASAP7 [15] open-
source predictive PDK was created in only a few weeks and
is now included in the core Hammer repository. With this,
small teams and academic users can prototype design flows
and experiment with RTL designs using predictive or simple
physical design kits, while being able to reuse similar Hammer
descriptions for chip fabrication using advanced process nodes.

Hammer was designed to support hierarchical physical de-
sign flows. Hierarchical physical design flows are of particular
importance in highly complex custom SoCs, composed of
multiple specialized blocks with a variety of physical design
constraints. Decomposing a design into these smaller hierar-
chical components not only improves the quality of results
emitted by EDA tools, but it also allows the distribution of
physical design tasks among multiple hardware developers,
which is important for agile design. FIRRTL-based grouping
and flattening transformations in Chipyard further assist the
hierarchical physical design flow in Hammer by enabling users
to specify one logical hierarchy in the source RTL, while
choosing a different hierarchy for physical boundaries through
automated transformations.

E. Input/Output Management

The various implementation and simulation flows in the
SoC design process will typically treat the digital IOs on
a system in different ways. For example, a software RTL
simulation would typically connect digital IOs directly to
software models in the TestHarness. However, on an FPGA
prototype or FPGA-accelerated simulator, these IOs would be
require some synthesizable bridge. For physical design, IO
cells must be inserted into the module hierarchy.

In order to handle the various methods of providing input
and output to the SoC across different simulation and im-
plementation flows, the Chipyard framework uses IOBinders.
IOBinders define the attachment behavior of IO ports to
the digital system being developed. An IOBinder specifies a
behavior for driving or interpreting an IO port of the digital
system. Thus, each simulation or implementation flow speci-
fies its own set of IOBinders to control how the digital IOs
will be interpreted in that flow. This abstracts IO management
from the actual implementation of the digital system.

F. Software Management

In order to enable complete SoC design and customization,
software testing is treated as a first-class component within the
Chipyard framework. As such, Chipyard provides a compatible

set of software tools for development and testing. Chipyard
provides a versioned set of standard RISC-V software de-
velopment tools (e.g. GNU toolchain, QEMU, Spike ISA
Simulator), as well as a set of equivalent non-standard RISC-
V development tools for non-standard extensions of custom
IP blocks. The two software development tool sets can be
used interchangeably in the framework. Chipyard provides
additional support for bare-metal software testing by using a
minimalistic port of libgloss [16] for RISC-V Machine-
mode. This port enables testing of bare-metal systems by
implementing system calls through a Chipyard-compatible
Host-Target interface for tethered systems.

Chipyard enables shared software development and man-
agement of complex software workloads through the FireMar-
shal software workload generation tool. FireMarshal provides
a standard version-controlled format for software workload
descriptions and automates the generation of these workloads
for various simulation targets (e.g. Spike, QEMU, FireSim).
FireMarshal is especially beneficial for Linux-based software
workloads, where it makes the complex task of software
development and porting easily reproducible and reusable by
anyone on the design team without requiring special expertise.

III. AGILE HARDWARE DEVELOPMENT USING CHIPYARD

To demonstrate the agile framework in action, we take an
example baseline Chipyard SoC configuration and iteratively
apply changes throughout the development and customiza-
tion process. We will further examine and validate various
properties relevant to those changes across the customization
process. The example baseline Chipyard SoC includes a single
BOOM out-of-order application-class processor, a shared L2
cache, and mix of UART, TSI and GPIO peripheral interfaces.
This example baseline SoC and it’s associated Chipyard con-
figuration is shown in Figure 2. The SoC configuration is a
composition of several other configuration fragments of system
sub-components. For example a BOOM WithMegaBooms
configuration fragment specifies a BOOM configuration with
a decode pipeline width of 4 instructions, 3-wide integer issue,
2-wide floating-point issue, 2-wide memory issue, 128 ROB
entries and 128 physical registers, and many other additional
configuration parameters.

A. Adding an Accelerator

With the slowdown of Moore’s law, many research en-
deavours begin with implementing a specialized compute
accelerator for particular applications. Chipyard offers mul-
tiple methods of accelerator integration through the Rocket
Chip generator with varying degrees of coupling to the host
processor. These methods include memory-mapped peripheral
accelerators and Rocket Custom Co-processors (RoCC).

Memory-mapped peripherals are a common method for
custom accelerator integration in SoCs. In a memory-mapped
peripheral, the processor communicates with the accelerator
through memory-mapped registers using the TileLink bus
protocol. Under such a scheme, the Rocket Chip generator
will generate a complete memory map that can be used in



Fig. 2. An example baseline SoC configuration consisting of a single 4-wide
BOOM out-of-order application-class processor, a shared L2 cache, and mix
of UART, TSI and GPIO peripheral interfaces.

software header files for drivers and other low-level software
elements which implement the communication between the
processor and the accelerator. Memory-mapped accelerators
are relatively generally accessible from an SoC perspective
in the sense they do not require particular support or in-
terface implementation from the application processor cores.
Nevertheless, they require software components in the form
of device drivers, and are located further down the memory
hierarchy from the processor core. This level of decoupling
allows for the flexibility of integrating and sharing these
accelerators under a variety of multi-core SoC configurations,
but incurs software access costs of interrupts and memory
operations when using them. An example of an open-source
memory-mapped accelerator is the Nvidia Deep Learning
Accelerator (NVDLA) [17]. The NVDLA has been used with
the Rocket Chip generator in several projects [18], and is also
integrated as part of the Chipyard framework.

Chipyard also supports tighter integration of accelerators
through the RoCC (RoCC) interface. Cores that support the
RoCC interface communicate with the accelerator through a
custom protocol and custom non-standard RISC-V instructions
reserved in the RISC-V ISA encoding space. The RoCC
protocol enables RoCC accelerators to access the L1 data
caches, stall the processor pipeline, and pass values through
registers. Both BOOM and Rocket cores support the RoCC
protocol. Each core can have up to four RoCC accelerators
controlled by custom instructions and sharing resources with
the CPU. An example of an open-source RoCC accelerator is
the Gemmini machine-learning accelerator [19]. Unlike the
NVDLA, Gemmini has direct DMA access to the SoC’s shared
L2 cache, can stall the host processor pipeline, and can be
programmed directly from user-space with custom assembly
instructions.

All accelerator integration methods within Chipyard fit
within the Chipyard configuration system and allow for easy
addition and removal from the SoC. As a result, the Chipyard
generator repository includes multiple open-source accelerator
IPs that can be added to the SoC using a single line of
code within the SoC configuration. For example, Figure 3

Fig. 3. An SoC configuration adding a Gemmini machine learning accelerator
to the baseline SoC config using a single configuration line (highlighted).

demonstrates adding the Gemmini accelerator (which uses the
RoCC interface) to the baseline SoC. This is done by adding
the DefaultGemminiConfig fragment to the SoC con-
figuration. the DefaultGemminiConfig fragment class is
defined within the Gemmini project repository, and sets the
various accelerator parameters such as the systolic array size
(16x16), scratchpad size (512 KiB), accumulator sizes (64
KiB), datatypes (Int8), dataflows (WS), etc.

B. Accelerator Software Validation

Pre-silicon validation of software which uses the custom
accelerator helps shorten the overall system development cy-
cle, and identify functional bugs and performance pathologies
when changes can still be made.

For the SoC configuration from the previous section, we
want to evaluate the execution of DNN inference using the
accelerator within the SoC. Executing the inference of a batch
of 4 images using the standard ResNet-50 DNN model takes
4 billion cycles. Running such a software RTL simulation
would take several days. The relevant testing and validation
flow within the Chipyard framework uses the Spike functional
ISA simulator and the FireSim FPGA-accelerated simulation
platform. A functional model of the Gemmini accelerator is in-
tegrated into a non-standard Spike functional simulator, which
enables initial software development with the Gemmini custom
instruction extensions. Once functional results are satisfactory,
further performance tuning is performed using the FireSim
FPGA-accelerated simulation platform. Executing the 4 billion
cycles of ResNet-50 on Gemmini with FireSim take a mere
few seconds of wall-clock time. While initial FPGA simulation
synthesis and build time is longer than standard RTL software
simulation compilation time, the combined synthesis and build
time is significantly shorter than software simulation time. The
one-off build synthesis time overhead is further amortized over
a large number of simulation runs when used for pre-silicon
software performance optimization on the simulated custom
SoC.

In fact, this flow of complete validation of software using
custom accelerators on the Chipyard framework has become
sufficiently easy-to-use that it can also be used for accelerator
evaluation under educational settings. The aforementioned
flow for hardware-software performance optimization of a



Fig. 4. An SoC configuration replacing the single BOOM out-of-order core
with 4 smaller Rocket in-order cores and smaller Gemmini accelerators to
evaluate PPA tradeoffs. The highlighted lines represent the configuration lines
that were replaced.

Gemmini accelerator was used in a class-wide lab in a recent
course offered at UC Berkeley [20].

C. Core Power-Performance-Area Tradeoffs

SoC designers can choose amongst a variety of application
cores to anchor an SoC. A common Power-Performance-Area
(PPA) consideration when designing a custom SoC is whether
to use smaller and more energy efficient parallel cores vs.
larger and more power-consuming high-performance single-
thread cores. While a particular application amenable to par-
allel processing might benefit from a multi-core configuration,
Amdahl’s law reminds us that single-threaded performance
limits the potential overall performance gains from parallelism.

Thus, determining the right core configuration requires
careful consideration of the expected software workload of the
device. A SoC designer might choose to explore multiple core
configurations before picking a design point. The Chipyard
framework does not ”lock-in” any particular core configuration
or core count, as the framework can generate reasonable
single-core and multi-core designs, with core configurations
ranging from small embedded-class in-order cores to large
application-class out-of-order cores.

For example, after careful analysis of the software work-
loads meant to run on the target SoC in Figure 3, the designer
may want to explore the PPA tradeoff of a more parallel
design-point which trades-off the powerful single-thread per-
formance of the BOOM out-of-order core for multiple smaller,
but more efficient Rocket in-order cores with smaller Gemmini
accelerators. With just a two-line change, the designer can
reconfigure Chipyard to generate this vastly different SoC
architecture illustrated in figure 4 with four smaller in-order
cores each driving a smaller 8x8 Gemmini accelerator. The
designer can then take advantage of Chipyard simulation
and VLSI flows to quickly measure the power-performance
tradeoffs of either design. Figure 5 demonstrates such an area
tradeoff comparison using a commercial FinFET process and
the Hammer flow as part of the SoC design process. Similar
estimations can be performed using open-source PDKs.

D. Non-invasive Physical Design Optimization

Throughout the implementation process, constraints im-
posed by the physical and computational realities of VLSI

Fig. 5. Post-synthesis area estimates using a commercial FinFET process
comparing a powerful single-core system with an alternative equivalent
parallel multi-core system.

processes many times result in divergences from the original
architectural design. Chipyard attempts to address the design
divergences that appear between digital/architectural simula-
tion and silicon implementation, through a ”source-of-truth”
RTL generator with re-usable and customizable RTL passes
that transform the RTL for VLSI flows. It is important that
the source hardware description simulated during architectural
exploration is as close as possible to the hardware description
that goes through physical design and implementation.

Instead of performing a flat layout in which the entire SoC
design is ran through the VLSI EDA tools at once, many
SoCs instead use a hierarchical flow. In a hierarchical physical
design flow, the SoC is split into smaller subcomponents
which are later assembled together, so VLSI EDA tools can
better optimize the smaller sub-blocks instead of attempting
to find a global layout optimum of the entire SoC. When
combined with floorplanning to get better timing and reduce
wire congestion, the physical module hierarchy can differ
significantly from the logical hierarchy described in the source
RTL. However, directly modifying the source RTL to move
and group modules to fit the new hierarchy is both time-
intensive and error-prone. Leveraging the power of FIRRTL, a
set of FIRRTL passes can be applied to the design to quickly
make large-scale hierarchy changes while maintaining correct
functionality. This is illustrated in Figure 6, in which the
prior design in Figure 4 was transformed into four module
regions: two clusters that both include two Rocket cores
and two Gemmini accelerators, an IO region that contains
UART, TSI, and GPIO interfaces, and an uncore region
that contains items like the L2 cache and bus subsystems.
This is done with a native FIRRTL transformation called
GroupAndDedup which groups modules together, followed
by the InlineInstances FIRRTL transformation to split
up a module into its submodules. This new hierarchy is used
within a hierarchical physical design flow which synthesizes,
places and routes each of the components individually and



Fig. 6. Physical-design friendly hierarchy generated after FIRRTL transfor-
mations, using the same SoC configuration from Figure 4.

then assembles them together. As a result, the overall time
of a placement and routing iteration is reduced from 100’s of
hours to 10’s of hours.

By using these mainstream FIRRTL passes, the main Chisel
RTL design is unchanged from the one that was originally
tested and verified, but the design can now continue iterating
through more efficient VLSI flow quality-of-results (QoR) op-
timizations. This enables shortening of design cycle iterations
through overlapping simulation, testing and physical design.

IV. CONCLUSION

In this article, we presented the Chipyard framework, an
integrated SoC research and implementation environment for
agile development. Through integration with the Rocket Chip
generator ecosystem, Chipyard provides a large number of
easily composable and extendable open-source digital designs,
enabling the construction and customization of complex SoCs
from inception to implementation. We demonstrate an example
exploratory SoC design flow using the the multiple simulation
and implementation tools integrated within Chipyard, which
enable continuous and simultaneous agile development for
higher-quality verification, validation, and system integration.
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