
Nested-Parallelism PageRank on RISC-V Vector Multi-Processors
Alon Amid, Albert Ou, Krste Asanović, Borivoje Nikolić

University of California, Berkeley
{alonamid,aou,krste,bora}@berkeley.edu

ABSTRACT
Graph processing kernels and sparse-representation linear alge-
bra workloads such as PageRank are increasingly used in machine
learning and graph analytics contexts. While data-parallel process-
ing and chip-multiprocessors have both been used in recent years
as complementary mitigations to the slowing rate of single-thread
performance improvements, they have been used together most
effectively on dense data-structure representations as opposed to
sparse representations. We present nested-parallelism implemen-
tations of PageRank for RISC-V multi-processor Rocket chip SoCs
with Hwacha vector architecture accelerators. These software im-
plementations are used for hardware and software design-space ex-
ploration using FPGA-accelerated simulation with multiple silicon-
proven multi-processor SoC configurations. The design space in-
cludes a variety of scalar cores, vector accelerator cores, and cache
parameters, as well as multiple software implementations with
tunable parallelism parameters. This work shows the benefits of
the loop-raking vectorizing technique compared to an alternative
vectorizing technique, and presents up to a 14x run-time speedup
relative to a parallel-scalar implementation running on the same
SoC configuration. A 25x speedup is demonstrated in a dual-tile
SoC with dual-lanes-per-tile vector accelerators, compared to a
minimal scalar implementation, demonstrating the scalability of
the proposed nested-parallelism techniques.

1 INTRODUCTION
Graph processing has been a recent topic of interest in high per-
formance computing, systems, and architecture research. While
graph abstractions have long been of interest in mathematical and
numerical computing communities, the rise of data analytics and
the big-data revolution have exposed the various use-cases of graph
processing to many additional domains. Computing statistical prop-
erties of graphs is required for many scientific, data-analysis, and
machine learning applications, including recommendation systems
[5], fraud detection [2] and biochemical processes [1, 28].

The Hwacha micro-architecture [20, 29] is a silicon-proven[16,
22, 23, 32] open-source decoupled vector-machine implementation
associated with the RISC-V ISA and Rocket-Chip SoC generator
[4] infrastructure. It is an evolution of previous decoupled vector-
fetch projects such as Maven [19], and uses the Hwacha RISC-V
non-standard ISA extension. Hwacha’s main micro-architectural
features include a decoupled multi-lane design orchestrated by a
master sequencer. Each lane consists of an SRAM-based register
file with a capacity of 16 KiB, allowing for a maximum vector
length of 2048 double-width elements. The SRAM-based register file
consists of 4 1R1W banks accessed in a systolic pattern, providing
for an aggregate read bandwidth of 4x128 bits and an equal write
bandwidth every cycle. Each lane also includes several floating-
point and integer functional units allowing for a throughput of
approximately 4 ops/cycle, depending on the operation. Hwacha is

integrated with the Rocket Chip SoC generator and uses a TileLink-
based [8] cache-coherent memory system. The vector memory unit
(VMU) in each lane has a bandwidth of 128 bits/cycle to the backing
L2 cache.

The Hwacha micro-architecture has been optimized for, and
mostly been evaluated on, dense linear algebra kernels such as
general matrix multiplication (DGEMM) [21]. Specifically, it has
not been designed or optimized for sparse and irregular workloads,
and the properties of the Hwacha vector architecture have not
yet been explored using sparse linear algebra kernels. An evalua-
tion of the bottlenecks of sparse linear algebra workloads on this
micro-architecture can provide additional insight into future design
choices.

One particular instance of a common graph processing kernel is
PageRank [27]. PageRank is an algorithm originally used by Google
to measure the importance of websites, with the purpose of ranking
them. Each website is modeled as a node (or vertex) in a graph, and
hyperlinks between websites are modeled as edges in the graph.
After running the PageRank algorithm, each vertex (representing
a website) is assigned a PageRank score, which allows it to be
compared and ordered against other websites, hence - creating a
ranking. The PageRank score is effectively a probability distribution
that represents the likelihood of a random walker (or a random
"hyperlink clicker") to arrive at a particular vertex (or web-page).
By viewing the PageRank problem as an irreducible Markov chain,
this probability distribution can be computed as an eigenvector
problem or a homogeneous linear system [10, 18]. Using the power
method, this results in an iterative process of sparse matrix-vector
multiplication (SpMV) operations. Therefore PageRank SpMV im-
plementations can be representative of a large class of sparse linear
algebra workloads.

When exploring parallel implementations, researchers are com-
monly constrained by rigid assumptions: either a fixed hardware
implementation (such as the case in high-performance computing
research), or fixed software benchmark suits (such as the case for
hardware architecture evaluation). This work attempts to broaden
the design space to include both hardware and software parameters
for mappings of PageRank kernels to a chip multi-processor with
Hwacha vector accelerators.

2 NESTED PARALLELISM PAGERANK
Throughout this study, "nested parallelism" is considered to be
the use of multiple parallel execution methods in a hierarchical
manner. Nested parallelism is used extensively in various software
libraries to maximize the amount of exploited parallelism given a
set of execution resources. Furthermore, it allows for tuning and
finer-grained load-balancing between parallelizable elements [11].

The ideas of exploiting nested parallelism in graph process-
ing have shown encouraging results in several previous attempts.



CARRV ’19, June 22, 2019, Phoenix, AZ Alon Amid, Albert Ou, Krste Asanović, Borivoje Nikolić

Nested parallelism within a single GPU has been studied to effi-
ciently utilize GPU architectures for general data-parallel work-
loads [12, 26]. Nested parallelism using multiple GPUs has been
demonstrated on graph processing algorithms, but requires care-
ful dynamic load balancing due to the high cost of transferring
data between host processors and CPUs [13]. Nested parallelism
in graph processing has also been explored using packed-SIMD
approaches with Intel AVX extensions and multi-core processors
[14, 25]. Recent work by research groups in Cornell [17] provides
significant contributions in the study and taxonomy of loop-level
parallelism through nested parallel hardware elements. Loop-task
parallel programs are a major use-case for nested-parallelism im-
plementations. This study explores the nested parallelism of chip
multi-processors (CMPs) with decoupled vector-fetch machines
integrated into SoCs, based on the silicon-proven Hwacha [20]
micro-architecture. This involves both hand-tuned optimization
of the internal vector-architecture code for the consideration of
the particular sparse data-structures representations, as well as
an additional layer of OpenMP for CMP multi-threading and load-
balancing management. To our knowledge, this nested-parallelism
approach for PageRank has not been previously attempted us-
ing vector-fetch architecture instructions sets and vector-machine
micro-architectures.

2.1 DCSR/DCSC Sparse Matrix Representation
Static graphs can be represented as sparse adjacency matrices.
Sparse matrices are commonly represented using multiple levels of
indirection, making the exploitation of parallelism within a sparse
matrix for linear algebra operations highly dependent upon the
data-structure representation. While some representations such
as Coordinate format (COO) may allow embarrassingly-parallel
execution at the cost of data-locality, other representations such as
Compressed Sparse Row/Column (CSR/CSC) improve data-locality
and constant-time accesses at the cost of creating dependencies
between different parts of the data-structure (hence, reducing par-
allelism).

The Double Compressed Sparse Row/Column (DCSR/DCSC) [7]
representation adds an additional level of indirection on-top of
CSR/CSC representations. This format is useful for the cases of
hyper-sparse matrices [7], since it provides an additional level of
compression. Nevertheless, this additional level of compression
comes at the cost of an explicit indices arrays and an auxiliary
pointers array to reduce access time complexity.

For the purposes of nested-parallelism experimentation, DCSR/DCSC
representations are a useful data structure, since they expose two
levels of indirection, which provide a natural boundary between two
levels of parallelism. A simple scalar implementation of a PageRank
SpMV kernel using a DCSR format includes 3 nested loops: The
outer loop iterates over the auxiliary row partition pointers (each
of which points to the beginning of a CSR matrix), the second loop
iterates over the row indices and pointers, and finally the inner
loop iterates over the non-zero values and column indices.

Hence, the top level of the DCSR data structure (the outermost
loop) can be thought of as a coarse-grained parallel layer. This layer
can be parallelized in multi-threaded hardware implementations by
using parallel hardware threads. Specifically, the implementations

Figure 1: Packed-Stripmining and Loop Raking vectoriza-
tion methods for a CSR sub-component of a DCSR matrix.
The blue arrows represent the actions of virtual proces-
sors in the first iteration, while the red arrows represent
the actions of virtual processors in the second iteration. In
packed-stripmining, the pointer array is accessed contigu-
ously, while in loop raking, the values array is accessed with
a constant stride.

in this work use OpenMP threads to parallelize across CMP cores.
Note each thread processes a sub-section of the matrix which is
represented in CSR format (with the additional row indices array).

The second level of our nested-parallelism scheme therefore
processes the internal CSR sub-matrices. We use the data-parallel
vector-architecture accelerator in order to parallelize the internal
loops of the CSR sub-matrices. Hence, we refer to the coarse-grained
single level parallel implementation as the reference scalar imple-
mentation.

2.2 Virtual Processors View
A popular way of thinking of the parallel nature of vector ma-
chines is as multiple concurrent "virtual processors" [3, 31]. Since
a CSR matrix data-structure is composed of two arrays, the vir-
tual processors can operate in-parallel either on the pointers array,
or on the values array. In graph-processing terms, these two ap-
proaches have been described in [12] as the node-parallel approach
and the edge-parallel approach. This work attempts to apply these
approaches by comparing two vectorizing techniques: the first
technique, nicknamed "packed-stripmining", attempts parallel pro-
cessing of the pointers array elements (node-centric). The second
technique, known as "loop-raking", focuses on parallel processing
of the values array (edge-centric). Note that "packed stripmining"
and "loop raking" are not complementary approaches used together,
but rather alternative approaches to parallelizing the same problem
across different parts of the data-structure.

2.3 Packed-Stripmining
Stripmining is a common technique for vectorization of dense loops
using vector-length-agnostic code. This means that the code is not
aware of the size of the hardware vector registers during compile-
time. Therefore, a stripmining loop attempts to configure the max-
imum possible requested vector length, and treats the accommo-
dated vector length as a variable. The stripmining loop then “strips”



Nested-Parallelism PageRank on RISC-V Vector Multi-Processors CARRV ’19, June 22, 2019, Phoenix, AZ

a layer of the actual vector register length, and repeats the process
for reminder.

However, stripmining works best on a continuous array of el-
ements in order to exploit parallelism efficiently. In the case of a
CSR sparse matrix representation, the imbalance in the number
of non-zero elements in each sparse row of a CSR matrix requires
additional manipulation for efficient stripmining. The progress of
the stripmining loop over the pointers array depends on the number
of non-zero elements each pointer in the array is pointing too. This
imbalance results in processing elements being idle, waiting for
the "worst case" virtual processor to finish. One possible solution
to this scenario is to pack only "active" (non-idle) pointers from
the pointers array. The "Packed-Stripmining" approach for CSR
matrices "packs" an array of imbalanced row pointers into a dense
array, at the cost of using control-flow statements within each itera-
tion of the stripmining loop. By re-packing the row-pointers every
iteration of the vector-processing loop, this "packed-stripmining"
loop can operate on the packed array as it would commonly operate
in balanced dense scenarios.

Note, that the packing stage itself cannot be vectorized due to an
internal conditional while loop which breaks the vectorization (or
result in an inefficient implementation), and therefore the packing
process is separated from the vectorized segment. However, since
the Hwacha vector accelerator is a vector-fetch architecture, there
is a possibility of overlap between control flow code, running on
the scalar core, and vectorized code, running on the vector acceler-
ator. This overlap should help minimize the additional control-flow
overhead, incurred by the packing stage.

Furthermore, while the packing approach is designed to fix the
problem of imbalanced sparse matrices (and transitively, imbal-
anced and power-law graphs), this approach still encounters a
difficulty if the imbalance is extreme (for example: one row has
more elements than all other rows combined), or if there is sig-
nificant imbalance towards the last rows/columns of the matrix.
We must remember that each virtual-processor handles only one
row (or "vertex" in the case of a graph), and therefore, if all the
virtual-processors are done working but there is one rowwith many
elements that still need to be processed, this row will only be pro-
cessed by a single virtual-processor while leaving the remaining
virtual processors idle.

2.4 Loop-Raking
The Loop Raking vectorizing approach was originally proposed for
sorting algorithms [31]. The raking access pattern is a common
vector pattern used for two-dimensional data-structures [3]. It has
been commonly used in dense data-structure scenarios such as
dense matrix multiplication and data compression. It allows con-
tiguous elements to be processed by the same virtual processor,
which can have positive or negative implications (depending on the
scenario) regarding spatial data-locality, memory consistency and
atomic operations. In the raking access pattern, virtual-processors
process array-elements in intervals of array_size/vector_lenдth.

This approach offers a partial solution to the imbalance problems
that appear in the packed-stripmining approach. In loop-raking, all
virtual processors can be utilized in every iteration of the loop (with
the possible exception of the last iteration). Since the vectorization

is performed across the values array rather than the pointers ar-
ray, performing an PageRank SpMV with loop-raking results in
an inherently more load-balanced scheme. Nevertheless, checking
row sizes and boundaries is still required in order to have full in-
formation about each matrix element for the purposes of linear
algebra operations. Therefore, unlike the dense use cases for which
loop-raking was originally proposed, a "tracker" vector register is
still required in the sparse matrix case in order to maintain infor-
mation about progress through each row in a CSR structure. This
tracker vector somewhat limits the possible load-balancing, since
the current implementation under evaluation in this work chooses
to define the rake interval as the size of the largest row. Therefore,
while loop-raking resolves the utilization problem of processing a
large row at the tail-end of the matrix, it does not solve the problem
of an extremely large row which composes the majority of elements
in the matrix (as may be the case in a power-law graph).

Another way to view the difference between packed-stripmining
and loop-raking is by the types of tracking checks that are per-
formed. In the packed-stripmining approach, the “virtual proces-
sors” process the packed array, and perform checks to track the
progress of elements in the non-zero elements array. This is as
opposed to the loop-raking approach, in which the "virtual proces-
sors" process the non-zero elements array (both the indices and the
values), while performing checks to track the status of the pointers
array.

3 EVALUATION METHOD
In order to fully implement and evaluate the proposed parallel
nested-parallelism models, a full Linux-based software stack was
required. Standard parallel programming libraries such as OpenMP
are used for the external coarse-grain parallelism level and to
perform pre-processing and data-structure construction on pub-
lic graph datasets. GraphMat [30] was chosen as the base graph-
processing framework infrastructure in this work for several rea-
sons. GraphMat uses DCSC and DCSR data-structures to repre-
sent the graph adjacency matrices, which have been previously
described to provide a natural boundary between the external paral-
lelism abstraction and the internal parallelism abstraction in nested-
parallelism. Since common graph processing benchmark data-sets
are usually provided in edge-list format, the use of the GraphMat
infrastructure abstracts away the complexities of constructing the
efficient DCSC and DCSR graph representations out of these edge-
list formats. Additionally, GraphMat uses bit-vectors in-order to
help represent sparse vectors. The use of bit-vector is very similar
to the use of vector predicate registers in the Hwacha vector accel-
erator. While the Hwacha architecture is not able to load bit-vectors
directly into predicate registers, this implementation is still helpful
for it’s equivalent representation. GraphMat has been used for a
variety of experiments and workloads, including in the architec-
ture research community [9], and has proven to be consistently
high-performing while maintaining it’s unique abstractions.

Hardware design space exploration is based on the Rocket Chip
SoC generatorwith theHwacha vector accelerator generator. Rocket
Chip is a silicon-proven SoC generator associated with the RISC-V
ecosystem. The SoC setup includes configurations with single-core
and dual-core Rocket Chip in-order cores, each accompanied by



CARRV ’19, June 22, 2019, Phoenix, AZ Alon Amid, Albert Ou, Krste Asanović, Borivoje Nikolić

Figure 2: Hardware SoC configurations under evaluation
generated by the rocket chip generator with the Hwacha
vector accelerator. Different colors mark different hardware
configuration parameters under exploration

various configurations of single-lane or dual-lane Hwacha vector
accelerators. We group together a single scalar in-order core and a
single vector accelerator into a tile. The SoC configurations include
a memory hierarchy with two levels of cache, of which the vector-
accelerator is connected directly to the L2 cache. The size of the L2
cache is also configurable parameter across the test configurations.

Performance evaluation was executed using FPGA-accelerated
cycle-exact simulation on the FireSim platform [15]. The FireSim
platform allows for FPGA-accelerated cycle-exact simulation on
the public cloud using Amazon Web Services (AWS) EC2 FPGA
instances. This FPGA-accelerated simulation enables running ap-
plication benchmarks on top of a fully functional Linux system in
a cycle-accurate simulation with only a 500x slow-down compared
to real time execution on a real silicon implementation. Similar
experiments would require multiple weeks using standard soft-
ware RTL simulators. Furthermore, the FireSim framework also
includes elaborate memory models which can simulate a full DDR3
backing memory system and last level caches (LLC) with high pre-
cision timing models, while maintaining the performance level of
FPGA-accelerated simulation [6]. It is worth noting that at least two
of the SoC configurations under evaluation have been previously
taped-out as test-chips. However, since test-chips lack a realistic
backing-memory system (which is significant for the evaluation of
sparse workloads), we chose to perform the full evaluation using
the FireSim platform.

Twelve different SoC hardware configurations were simulated
with a simulated SoC frequency of 1033 MHz. The backing-memory
model used for the simulations was a DDR3 memory model with
speed-grade of 14-14-14. Figure 2 shows block diagrams of the
evaluated SoC configurations.

Performance was measured on three sample graphs selected
from the Stanford Network Analysis Project [24]. The graphs were
selected to present different use-cases and characteristics, while
still maintaining a size which allows for testing at reasonable times
across the design-space.

Performance was also evaluated using an additional software
parameter which controls the number of DCSR partitions in rela-
tion to the number of hardware threads. This DCSR partition factor

is multiplied by the number of hardware threads to determine the
number of overall top-level DCSR partitions. For example, if the
DCSR partition factor is 4, and the number of hardware threads is 2
(in a dual-tile configuration), then the graph DCSR representation
will have 8 DCSR partitions. Since the coarse-grain OpenMP exter-
nal parallelization scheme parallelizes across cores using units of
DCSR partitions, increasing this factor increases the granularity of
the dynamic allocation of partitions between cores. However, while
this factor increases the dynamic allocation of kernels to hardware
threads, it may also decrease vector lengths used in the vectorized
code if a large number of partitions results in smaller graph sections
per-partition.

4 DESIGN SPACE ANALYSIS
The measured results present several interesting patterns. We ad-
dress two different speedups when analyzing the results: the overall-
speedup compared to a reference minimal scalar design (single-tile,
L2 size of 512 KB), and relative-speedup compared to an equiva-
lent design without a vector accelerator (i.e. a dual-tile-single-lane
design would be compared against a scalar implementation of a
dual-tile design with the same cache size).

4.1 L2 Cache Size
Unsurprisingly, different cache sizes have little to no effect on the
performance of PageRank on all graph types and all parallel PageR-
ank implementations in the various hardware configurations. This
behavior is consistent both when varying the number of tiles and
when varying the number of vector lanes. The wikiVote graph is
small enough to fit in all of the evaluated L2 cache configurations,
hence, it is not surprising that we do not observe changes in be-
havior across the evaluated L2 cache sizes for the wikiVote graph.
However the roadNet-CA and amazon0302 graphs are larger graphs
which cannot fit in any of the L2 cache size configurations, but we
also do not observe an improvement across different cache sizes
for these larger graphs under any implementation. This behavior is
somewhat expected of graph workloads, which have been known
to have poor spatial and temporal locality.

4.2 Number of Tiles vs. Vector Lanes
As expected, increasing the number of tiles improves the absolute
performance of all graphs and software configurations compared
to a minimal single-tile configuration. The coarse-grain OpenMP-
based scalar reference implementation obtains near-linear scaling
between a single tile to two tiles. However, when comparing the
relative-speedup of the vectorized kernels vs. the reference scalar
kernel (figure 4), it is noticeable that the loop raking technique
obtains a higher relative-speedup in the dual-tile case compared
to the single-tile case. On the other hand, the packed-stripmining
approach obtains the same, and sometimes even worst, relative-
speedup in the dual-tile case compared to the single-tile case. When
considering the absolute-speedup between the single-tile and dual-
tile case 3), the loop-raking technique obtains near-linear abso-
lute scaling between one-tile to two-tiles, similar to the scaling
of the scalar implementation. The packed stripmining approach
presents less consistent scaling behavior, especially on the ama-
zon0302 graph. We can conclude from these observations that the



Nested-Parallelism PageRank on RISC-V Vector Multi-Processors CARRV ’19, June 22, 2019, Phoenix, AZ

Ti
le

s

Vector Lanes 
Per Tile

1

2

1 2

1

2

1

2

Ve
ct

or
 L

an
es

L2 Cache Size
512 KB 1024 KB 2048 KB

L2 Cache Size
512 KB 1024 KB 2048 KB

Ti
le

s
Figure 3: Design space exploration across hardware parameters. Comparison on absolute Speedup compared to a minimal
reference design consisting of a single scalar core and 512KB L2 cache. The dual-tile/single-lane configuration provides greater
speedup than the single-tile/dual-lane configuration (with similar area overheads). L2 cache size is not a factor for speedups
on graphs larger than the cache size.

loop-raking method is more scalable, in relation to the number of
tiles, than the packed-stripmining method.

Also as expected, increasing the number vector lanes per tile gen-
erally improves the performance of most graph and software con-
figurations, compared to a single-lane or single-scalar-tile configu-
rations. Similarly to the multi-tile case, the loop-raking technique
obtains a higher relative-speedup in the dual-lane case compared
to a single-lane case. However, this observation is less-informative
than in the dual-tile case, since the multi-lane scenario relative-
speedup is equivalent to the multi-lane absolute-speedup since
there is only a single scalar core in both the single-lane and dual-
lane cases. The absolute-speedup scaling between the single-lane
configuration to the dual-lane configuration does not scale as well
as it did in the multi-tile comparison. For the packed-stripmining
method, an additional lane provides a minimal speedup gain. Fur-
thermore, the packed-stripmining implementation actually exhibits
a smaller speedup in the dual-lane configuration on the wikiVote
graph compared to the single-lane configuration. Nevertheless, it is
clear than an additional lane indeed provides additional significant
speedup for the loop-raking method.

Given the area and power cost of additional tiles and vector lanes,
it is interesting to investigate the trade-off between the two for
each parallel implementation. We would like to compare a single-
tile-dual-lane design to a dual-tile-single-lane design. Both designs
have a total of two vector lanes (albeit, split between two tiles vs.
concentrated in one tile), but the latter has an additional scalar con-
trol processor controlling the second vector lane. While the area
comparison is not exact, we know from previous test-chips which
include Rockets scalar processors and Hwacha vector accelerators
[16] that the vector lanes are the dominant area component com-
pared to scalar cores. When observing the normalized speedups in
figure 3, it is clear that a dual-tile-single-lane design demonstrates a
more significant speedup compared to the minimal scalar single-tile
scalar design on all of the evaluated graphs. Figure 4 shows that
these observations remain consistent across the different software
configurations as well. We can therefore conclude that multi-tile-
single-lane configurations are likely a better choice for a PageRank
workload with nested-parallelism implementations (and perhaps

sparse workloads in general) compared to single-tile-multi-lane
configurations. Nevertheless, these observations need to be sup-
ported by supplemental energy and area measurements from a
fabricated SoC.

4.3 Packed-Stripmining vs. Loop-Raking
An initial observation of the measured results in figure 4 indicates
that the best performing vectorized kernel depends on the choice of
graph and the DCSR partitioning parameters. When observing the
results with a DCSR partition factor of 1, we see that loop-raking
outperforms packed-stripmining for the wikiVote and amazon0302
graphs, but gets beaten in the roadNet-CA graph. However, fur-
ther observation demonstrates that the loop-raking speedup (both
relative-speedup and absolute-speedup) improves as the DCSR par-
tition factor increases for the roadNet-CA and amazon0302 graphs.
Hence, for DCSR partition factors of 4, 8 and 16, loop-raking is
able to out-perform packed-stripmining for the roadNet-CA graph
as well. Furthermore, the maximum observed speedups obtained
by loop-raking (both relative-speedups and absolute-speedups) are
significantly higher than the maximum observed speedups obtained
by packed-stripmining (5.1x, 4.6x, 2.7x maximum relative speedups
for the 3 graphs using packed-stripmining, vs. 7.3x, 9.2x, 13.9x
maximum relative-speedups for the 3 graphs respectively using
loop-raking). We can therefore conclude that when tuned correctly,
loop-raking is generally a better choice of vectorizing kernel for
nested-parallelism PageRank implementations. Additional analysis
regarding the impact of graph properties on the behavior of each
of the implementation is omitted from this report due to space
constraints.

4.4 Vector vs. Multi-Core Scalar Processors
Another question of interest when addressing graph-processing
and sparse workloads regards the benefit of data-level parallelism
vs. task-level parallelism. This question can be projected to the
design space under evaluation by comparing the run-time of a
scalar-parallel implementation to an equivalent vectorized imple-
mentation. It is important to note that while the scalar implemen-
tation in this evaluation has a parallel dimension across DCSR



CARRV ’19, June 22, 2019, Phoenix, AZ Alon Amid, Albert Ou, Krste Asanović, Borivoje Nikolić

0
5

10
15
20
25

T1
L1

C2
04

8 

 N
or

m
al

ize
d

Sp
ee

du
p

DCSR Software Partition Factor
Absolute Speedup - Packed-Stripmining

0
5

10
15
20
25

DCSR Software Partition Factor
Absolute Speedup - Loop Raking

0

5

10

15
DCSR Software Partition Factor

Relative Speedup - Packed-Stripmining

0

5

10

15
DCSR Software Partition Factor
Relative Speedup - Loop Raking

0
5

10
15
20
25

T1
L2

C2
04

8 

 N
or

m
al

ize
d

Sp
ee

du
p

0
5

10
15
20
25

0

5

10

15

0

5

10

15

0
5

10
15
20
25

T2
L1

C2
04

8 

 N
or

m
al

ize
d

Sp
ee

du
p

0
5

10
15
20
25

0

5

10

15

0

5

10

15

wikiVote roadCA amazon03020
5

10
15
20
25

T2
L2

C2
04

8 

 N
or

m
al

ize
d

Sp
ee

du
p

wikiVote roadCA amazon03020
5

10
15
20
25

wikiVote roadCA amazon03020

5

10

15

wikiVote roadCA amazon03020

5

10

15

Partition Factor 1 Partition Factor 2 Partition Factor 4 Partition Factor 8 Partition Factor 16

Figure 4: Design space exploration across software parameters. Absolute and relative Speedups for 4 SoC configurations. SoC
configurations are labeled with the format T[Number of Tiles]L[Number of Vector Lanes per Tile]C[L2 Cache Size]. The small
graph is negatively impacted by the software partition factor due to the reduce vector length. Loop-rakingwith higher software
partition factors allow for better load-balancing, and therefore better speed-ups. Large partition factor allow loop-raking to
outperform packed-stripmining on all graphs.

partitions, this is only coarse-grained task-level parallelism. The
internal loops of the scalar implementation were not optimized for
task-level parallelism. Nevertheless, we can attempt to perform a
coarse-estimate by observing the results of figure 3.We observe that
the dual-tile configurations obtain a 2x speedup when using the
scalar implementations compared to the single-tile scalar implemen-
tations. At the same time, we observe that a single-tile-single-lane
vector accelerator obtains between 2.75-8.6x speedup compared to
the scalar implementation.

When analyzing the benefits of adding a vector accelerator for
a sparse workload as opposed to adding additional scalar cores,
we must consider the number of addition functional units that are
contributed by a vector accelerator vs. a scalar core. The Hwacha
vector accelerator has 4 floating-point functional units, while a
Rocket scalar core has only 1. In almost all cases, we observe that
an implementation consisting of the Hwacha vector accelerator
obtains more than a 4x absolute speedup. The only cases where
the vector accelerator obtains an absolute speedup lower than 4x
are for the wikiVote graph in the packed-stripmining case, and for
certain DCSR partition configurations of the CA-roadNet graph in
the loop-raking case. Hence, it is reasonable to concluded that with
the correct choice of software implementation and optimization,
the vector accelerator can potentially achieve the desired speedup
(greater than 4x) in all of the evaluated scenarios, and therefore
data-parallel vector accelerators remain a valid choice for sparse
and graph-processing workloads.

5 CONCLUSION
This work presents SW/HW co-design space exploration and evalu-
ation of nested-parallelism PageRank graph processing kernels on

multi-core vector architectures. The design space was evaluated by
using a variety of SoC configurations of Rocket multi-processors
with Hwacha vector accelerators and multiple software configu-
rations. This work demonstrated the benefits of the loop-raking
vectorizing technique compared to the packed-stripmining vectoriz-
ing technique for a sparse data-structure representations, attributed
to the overhead of additional re-packing in the scalar-processor and
longer vector lengths. Furthermore, this work demonstrated that
using correct data-structure partitioning, the loop-raking vector-
izing technique can achieve up to 14x relative-speedup compared
to equivalent coarse-grained parallel scalar implementations, and
a 25x absolute speedup compared to a minimal single-tile scalar
implementation by using dual-tile SoC with dual-lanes-per-tile
vector accelerators. Finally, this work demonstrated that a dual-
tile-single-vector-lane approach achieves the best performance for
these types of vectorized nested-parallel sparse workloads under
evaluation within fixed area constraints, by providing a balanced
mix of multi-tile task-level parallelism and vector architecture data-
level parallelism.

6 ACKNOWLEDGMENTS
The authors would like to thank Colin Schmidt for his assistance.
The information, data, or work presented herein was funded in
part by the Advanced Research Projects Agency-Energy (ARPA-E),
U.S. Department of Energy, under Award Number DE-AR0000849.
Research was partially funded by ADEPT Lab industrial sponsor
Intel, and ADEPT Lab affiliates Google, Siemens, and SK Hynix. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.



Nested-Parallelism PageRank on RISC-V Vector Multi-Processors CARRV ’19, June 22, 2019, Phoenix, AZ

REFERENCES
[1] Tero Aittokallio and Benno Schwikowski. 2006. Graph-based methods for

analysing networks in cell biology. Briefings in Bioinformatics 7, 3 (2006), 243.
https://doi.org/10.1093/bib/bbl022

[2] Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph Based Anomaly
Detection and Description: A Survey. Data Min. Knowl. Discov. 29, 3 (May 2015),
626–688. https://doi.org/10.1007/s10618-014-0365-y

[3] Krste Asanovic. 1998. Vector microprocessors. Ph.D. Dissertation. University of
California, Berkeley.

[4] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Palmer Dabbelt, John Hauser, Adam M.
Izraelevitz, Sagar Karandikar, Benjamin Keller, Donggyu Kim, John Koenig, Yun-
sup Lee, Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moretó,
Albert Ou, David Patterson, Brian H Richards, Colin Schmidt, Stephen M. Twigg,
Huy Vo, and Andrew Waterman. 2016. The Rocket Chip Generator. EECS De-
partment, University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17 (2016).

[5] Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. 2010. Fast Incremental
and Personalized PageRank. Proc. VLDB Endow. 4, 3 (Dec. 2010), 173–184. https:
//doi.org/10.14778/1929861.1929864

[6] David Biancolin, Sagar Karandikar, Donggyu Kim, Jack Koenig, Andrew Water-
man, Jonathan Bachrach, and Krste Asanović. 2019. FASED: FPGA-Accelerated
Simulation and Evaluation of DRAM. In The 2019 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays (FPGA’19) (FPGA ’19). ACM, New
York, NY, USA, 10.

[7] Aydin Buluc and John R Gilbert. 2008. On the representation and multiplication
of hypersparse matrices. In 2008 IEEE International Symposium on Parallel and
Distributed Processing. 1–11. https://doi.org/10.1109/IPDPS.2008.4536313

[8] Henry M Cook, Andrew S Waterman, and Yunsup Lee. 2015. TileLink cache
coherence protocol implementation. Technical Report.

[9] Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and Margaret
Martonosi. 2016. Graphicionado: A High-performance and Energy-efficient
Accelerator for Graph Analytics. In The 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-49). IEEE Press, Piscataway, NJ, USA,
Article 56, 13 pages. http://dl.acm.org/citation.cfm?id=3195638.3195707

[10] Taher Haveliwala. 1999. Efficient computation of PageRank. Technical Report.
Stanford.

[11] Susan Flynn Hummel and Edith Schonberg. 1991. Low-overhead scheduling of
nested parallelism. IBM Journal of Research and Development 35, 5.6 (Sep. 1991),
743–765. https://doi.org/10.1147/rd.355.0743

[12] Yuntao Jia, Victor Lu, Jared Hoberock, Michael Garland, and John C Hart. 2011.
Edge v. node parallelism for graph centrality metrics. In GPU Computing Gems
Jade Edition. Elsevier, 15–28.

[13] Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat McCormick, Mattan Erez, and
Alex Aiken. 2017. A Distributed multi-GPU System for Fast Graph Processing.
Proc. VLDB Endow. 11, 3 (Nov. 2017), 297–310. https://doi.org/10.14778/3157794.
3157799

[14] Peng Jiang and Gagan Agrawal. 2018. Conflict-free Vectorization of Associative
Irregular Applications with Recent SIMD Architectural Advances. In Proceedings
of the 2018 International Symposium on Code Generation and Optimization (CGO
2018). ACM, New York, NY, USA, 175–187. https://doi.org/10.1145/3168827

[15] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra,
Q. Huang, Kyle Kovac, Borivoje Niklic, Randy Katz, Jonathan Bachrach, and
Krste Asanovic. 2018. FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System
Simulation in the Public Cloud. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). 29–42. https://doi.org/10.1109/
ISCA.2018.00014

[16] Ben Keller, Martin Cochet, Brian Zimmer, Jaehwa Kwak, Alberto Puggelli, Yun-
sup Lee, Milovan Blagojević, Stevo Bailey, Pi-Feng Chiu, Palmer Dabbelt, Colin
Schmidt, Elad Alon, Krste Asanović, and Borivoje Nikolić. 2017. A RISC-V Pro-
cessor SoC With Integrated Power Management at Submicrosecond Timescales
in 28 nm FD-SOI. IEEE Journal of Solid-State Circuits 52, 7 (July 2017), 1863–1875.
https://doi.org/10.1109/JSSC.2017.2690859

[17] Ji Kim, Shunning Jiang, Christopher Torng, Moyang Wang, Shreesha Srinath,
Berkin Ilbeyi, Khalid Al-Hawaj, and Christopher Batten. 2017. Using Intra-core
Loop-task Accelerators to Improve the Productivity and Performance of Task-
based Parallel Programs. In Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-50 ’17). ACM, New York, NY, USA, 759–
773. https://doi.org/10.1145/3123939.3136952

[18] Amy N Langville and Carl D Meyer. 2004. Deeper inside pagerank. Internet
Mathematics 1, 3 (2004), 335–380.

[19] Yunsup Lee, Rimas Avizienis, Alex Bishara, Richard Xia, Derek Lockhart, Christo-
pher Batten, and Krste Asanović. 2011. Exploring the tradeoffs between pro-
grammability and efficiency in data-parallel accelerators. In 2011 38th Annual
International Symposium on Computer Architecture (ISCA). 129–140.

[20] Yunsup Lee, Albert Ou, Colin Schmidt, Sagar Karandikar, Howard Mao, and
K Asanovic. 2015. The Hwacha Microarchitecture Manual, Version 3.8. EECS

Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2015-263
(2015).

[21] Yunsup Lee, Colin Schmidt, Sagar Karandikar, Daniel Dabbelt, Albert Ou, and
K Asanovic. 2015. Hwacha Preliminary Evaluation Results, Version 3.8. EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2015-264
(2015).

[22] Yunsup Lee, Andrew Waterman, Rimas Avizienis, Henry Cook, Chen Sun,
Vladimir Stojanović, and Krste Asanović. 2014. A 45nm 1.3GHz 16.7 double-
precision GFLOPS/W RISC-V processor with vector accelerators. In ESSCIRC
2014 - 40th European Solid State Circuits Conference (ESSCIRC). 199–202. https:
//doi.org/10.1109/ESSCIRC.2014.6942056

[23] Yunsup Lee, Brian Zimmer, Andrew Waterman, Alberto Puggelli, Jaehwa Kwak,
Ruzica Jevtic, Ben Keller, Stevo Bailey, Milovan Blagojevic, Pi-Feng Chiu, Henry
Cook, Rimas Avizienis, Brian Richards, Elad Alon, Borivoje Nikolic, and Krste
Asanovic. 2015. Raven: A 28nmRISC-V vector processor with integrated switched-
capacitor DC-DC converters and adaptive clocking. In 2015 IEEE Hot Chips 27
Symposium (HCS). 1–45. https://doi.org/10.1109/HOTCHIPS.2015.7477469

[24] Jure Leskovec et al. 2010. Stanford network analysis project. http://snap. stanford.
edu (2010).

[25] Sander Lijbrink. 2015. Irregular Algorithms on The Xeon Phi. Master’s thesis.
Universiteit Van Amsterdam.

[26] Adam McLaughlin and David A. Bader. 2018. Accelerating GPU Betweenness
Centrality. Commun. ACM 61, 8 (July 2018), 85–92. https://doi.org/10.1145/
3230485

[27] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[28] Nataša Pržulj. 2011. Protein-protein interactions: Making sense of networks via
graph-theoretic modeling. Bioessays 33, 2 (2011), 115–123.

[29] Colin Schmidt and Albert Ou. 2018. Hwacha: A Data-Parallel RISC-V Extension
and Implementation. In Proceedings of the Inaugural RISC-V Summit. RISC-V
Foundation.

[30] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Patwary, Subramanya R.
Dulloor, Michael J. Anderson, Satya Gautam Vadlamudi, Dipankar Das, and
Pradeep Dubey. 2015. GraphMat: High Performance Graph Analytics Made
Productive. Proc. VLDB Endow. 8, 11 (July 2015), 1214–1225. https://doi.org/10.
14778/2809974.2809983

[31] Marco Zagha and Guy E. Blelloch. 1991. Radix Sort for Vector Multiprocessors. In
Proceedings of the 1991 ACM/IEEE Conference on Supercomputing (Supercomputing
’91). ACM, New York, NY, USA, 712–721. https://doi.org/10.1145/125826.126164

[32] Brian Zimmer, Yunsup Lee, Alberto Puggelli, Jaehwa Kwak, Ruzica Jevtić, Ben
Keller, Steven Bailey, Milovan Blagojević, Pi-Feng Chiu, Hanh-Phuc Le, Po-Hung
Chen, Nicholas Sutardja, Rimas Avizienis, Andrew Waterman, Brian Richards,
Philippe Flatresse, Elad Alon, Krste Asanović, and Borivoje Nikolić. 2016. A RISC-
V Vector Processor With Simultaneous-Switching Switched-Capacitor DC–DC
Converters in 28 nm FDSOI. IEEE Journal of Solid-State Circuits 51, 4 (April 2016),
930–942. https://doi.org/10.1109/JSSC.2016.2519386

https://doi.org/10.1093/bib/bbl022
https://doi.org/10.1007/s10618-014-0365-y
https://doi.org/10.14778/1929861.1929864
https://doi.org/10.14778/1929861.1929864
https://doi.org/10.1109/IPDPS.2008.4536313
http://dl.acm.org/citation.cfm?id=3195638.3195707
https://doi.org/10.1147/rd.355.0743
https://doi.org/10.14778/3157794.3157799
https://doi.org/10.14778/3157794.3157799
https://doi.org/10.1145/3168827
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/JSSC.2017.2690859
https://doi.org/10.1145/3123939.3136952
https://doi.org/10.1109/ESSCIRC.2014.6942056
https://doi.org/10.1109/ESSCIRC.2014.6942056
https://doi.org/10.1109/HOTCHIPS.2015.7477469
https://doi.org/10.1145/3230485
https://doi.org/10.1145/3230485
https://doi.org/10.14778/2809974.2809983
https://doi.org/10.14778/2809974.2809983
https://doi.org/10.1145/125826.126164
https://doi.org/10.1109/JSSC.2016.2519386

	Abstract
	1 Introduction
	2 Nested Parallelism PageRank
	2.1 DCSR/DCSC Sparse Matrix Representation
	2.2 Virtual Processors View
	2.3 Packed-Stripmining
	2.4 Loop-Raking

	3 Evaluation Method
	4 Design Space Analysis
	4.1 L2 Cache Size
	4.2 Number of Tiles vs. Vector Lanes
	4.3 Packed-Stripmining vs. Loop-Raking
	4.4 Vector vs. Multi-Core Scalar Processors

	5 Conclusion
	6 Acknowledgments
	References

